期刊文献+

一种自适应数据逐层分解的Reed-Solomon码迭代纠错方法及应用 被引量:2

An Adaptive Reed-Solomon Iterative Correction Method Based on Data Layer-wise Decomposition and Its Application
下载PDF
导出
摘要 该文针对Reed-Solomon码纠错算法计算复杂度较高、运算时间较长等问题,提出一种自适应数据逐层分解的Reed-Solomon码的迭代译码纠错方法。首先,接收码通过逐层分解将随机错误或突发错误分散于不同的子序列中,缩小突发或随机错误的查找范围;其次,制定约束规则确定错误数目,同时根据不同的伴随矩阵维数自适应选择迭代求解关键方程的方法,定位子序列中误码的位置;最后,计算正确码字,结束纠错。实验测试表明,该算法在保证不漏检误码的前提下,能够有效简化计算多项式的维数,减少计算量和复杂度,纠错时效优于DFT(Discrete Fourier Transform)算法和BM(Berlekamp-Massey)算法。特别是对2维码数据的纠错测试中,与传统算法相比,该算法纠错时效可提升一个数量级。 In order to reduce the computational complexity, an improved decoding algorithm based on a layer-wise decomposition transform is proposed for Reed-Solomon (RS) codes in this paper. Firstly, the received codewords are split into a number of sub-sequence codewords by layer-wise decomposition. The random or burst error are dispersed in different sub-sequences, narrowing search areas of the burst or random errors. Secondly, the appropriate rules are developed to determine the number of errors. To help locate the error pattern of the sub-sequence, an adaptive iterative method to solve the key equation is used according to the adjoin matrix dimension. Finally, the correct codewords are obtained by subtracting error estimation from the received sequence. The tests show that in premise of detecting all errors the order of the polynomial is reduced and the computational complexity is lowered. The rate of error correction of the proposed algorithm is higher than DFT (Discrete Fourier Transform) algorithm and BM (Berlekamp-Massey) algorithm. Especially in the tests of the two-dimensional code, error correction efficiency is improved one order of magnitude.
作者 王娟 王萍
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1173-1179,共7页 Journal of Electronics & Information Technology
基金 河北省科技支撑项目资助课题
关键词 Reed-Solomon(RS)码 逐层分解 降维 迭代求解 Reed-Solomon (RS) code Layer-wise decomposition Dimensionality reduction Iterative solution
  • 相关文献

参考文献19

  • 1阔永红,曾伟涛,陈健.基于概率逼近的本原BCH码编码参数的盲识别方法[J].电子与信息学报,2014,36(2):332-339. 被引量:16
  • 2Couvreur A, Gaborit P, Gaut|fier-Umafia V, et al: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes[J]. Designs, Codes and Cryptography, 2014, 73(2): 641 666.
  • 3Lin Sire and Costello D J. Error Control Coding [M]. 2nd Edition, London, UK: Prentice Hall, 2004: 153-175.
  • 4Tilavat V trod Shukla Y. Simplification of procedure for decoding Reed-Solomon codes using various algorithms: an introductory survey[J]. International Joual of Engineering Development and Research, 2014, 2(1): 279 283.
  • 5Wachter-Zeh A, Zeh A, and Bossert M. Decoding interleaved Reed-Solomon codes beyond their joint error-correcting capability[J]. Designs, Codes and CrgptogTphy, 2014, 71(2): 261-281.
  • 6Boito P. The Euclidean algorithm[J]. Structured Matrix Based Methods for Approa:imate Polynomial, 2009, 15(1): 45 58.
  • 7Park J I and Lee H. Area-efficient truncated Berlekamp- Massey arclfitecture for Reed-Solomon decoderIJ]. Electronics Letters, 2011, 47(4): 241-243.
  • 8Chen Y H, Truong T K, Chang Y, et al: Algebraic decoding of quadratic residue codes using Berlekamp-Massey algorithm[J]. Journal of InfoTwmtion Science and Engineering 2007, 23(1): 127-145.
  • 9Sarwate D V and Shanbhag N R. High-speed architectures for Reed-Solomon decoders[J]. IEEE Transactions on VLSI Systems, 2001, 9(5): 641:655.
  • 10Lin T C, Truong T K, Chang H C, et al: A future simplification of procedure for decoding nonsystematic Reed- Solomon codes using the Berlekamp-Massey algorithm[J]. IEEE Transactions on Communications, 2011, 59(6): 1555-1562.

二级参考文献29

  • 1LUPeizhong,LIShen,ZOUYan,LUOXiangyang.Blind recognition of punctured convolutional codes[J].Science in China(Series F),2005,48(4):484-498. 被引量:18
  • 2IEEE Std 802.16. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems[S], 2004.
  • 3Preez An D, Swarts F, and Agdhasi. F. A flexible Reed-Solomon codec [C]. Proc. Of African 1999, Cape Town, South Africa, IEEE Volume 1, 28 Sept.-1 Oct, 1999 Vol.1: 93-98.
  • 4Cho Sungrae, Goulart A, and Akyildiz I F, et al.. An adaptive FEC with QoS provisioning for real-time traffic in LEO satellite networks [C]. ICC 2001. IEEE International Conference on Communications, Helsink, Finland, 11-14 June 2001, Vol.9: 2938-2942.
  • 5Akyildiz F, Joe I, Driver H, and Ho Y L. An adaptive FEC scheme for data traffic in wireless ATM network [J]. IEEE Trans. on Networking, 2001.9(4): 419-422.
  • 6Song Moon Kyou, Kong Min Han, and Won Hee Sun. A variable Reed-Solomon decoder using separate clocks in its pipelined steps [C]. PIMRC 2004. 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Barcelona, Spain, 5-8 Sept. 2004, Vol.2: 1322-1326.
  • 7Strollo A G M, Netro N, and Caro D De. An area-efficient high-speed Reed-Solomon decoder in 0.25urn CMOS [C]. ESSCIRC 2004. Proceeding of the 30th European Solid-State Circuits Conference, Leuven, Belgium, 21-23 Sept. 2004:479-482.
  • 8Buerner T, Dohmen R, and Zottmann A, et al.. Wijingaarden. On a high-speed Reed-Solomon codec architecture for 43Gb/s optical transmission systems [C]. 24th International Conference on Microelectronics, NIS, Sepspa and Montenegro, 16-19 May 2004, Voh2: 743-746.
  • 9Xie Jun, Tu Xiaodong, and Yuan Songxin, et al.. A low-complexity Reed-Solomon decoder for GPON [C]. 2006 International Conference on Circuits and Systems Proceedings, Kos, Greece, June 2006, Vol.4: 2488-2492.
  • 10Lee Hanho. An ultra high-speed Reed-Solomon decoder [C]. ISCAS 2005. IEEE International Symposium on Circuits and Systems, 23-26, May 2005, Vol. 2:1036-1039.

共引文献18

同被引文献22

  • 1张军,王志功,胡庆生,肖洁.高速Berlekamp-Massey算法结构及电路实现[J].电路与系统学报,2006,11(4):85-89. 被引量:5
  • 2DONG Feihong,Huang Qinfei,LI Hongjun,et al.A novel M2M backbone network architecture[J].International Journal of Distributed Sensor Networks,2015,15(11):1-10.
  • 3ZHANG Wei,ZHANG Gengxin,GOU Liang,et al.A hierarchical autonomous system based topology control algorithm in space information network[J].KSII Transactions on Internet and Information Systems,2015,9(9):3572-3593.doi:10.3837/tiis.2015.09.016.
  • 4ZHANG Gengxin,ZHANG Wei,and ZHANG Hua.A novel proposal of architecture and network model for space communication networks[C].Proceeding of the 65th International Astronautical Congress,Toronto,Canada,2014:147-153.
  • 5LI Bo,WANG Mengdi,ZHAO Yongxin,et al.Modeling and verifying Google file system[C].Proceeding of the 16th IEEE International Symposium on High Assurance Systems Engineering (HASE),Daytona Beach Shores,FL,2015:207-214.
  • 6Dimakis A G,Godfrey P B,Wainwright M,et al.Network coding for distributed storage systems[J].IEEE Transactions on Information Theory,2010,56(9):4539-4551.
  • 7Toni E.Codes between MBR and MSR points with exact repair property[J].IEEE Transactions on Information Theory,2014,60(11):6993-7005.
  • 8Byers J W,Luby M,and Mitzenmacher M A.Digital fountain approach to asynchronous reliable multicast[J].IEEE Journal on Selected Areas in Communications,2002,20(3):1528-1540.
  • 9LIN Yunfeng,LIANG Ben,and LI Baochun.Data persistence in large-scale sensor networks with decentralized fountain codes[C].Proceeding of the 26th IEEE International Conference on Computer Communications (INFOCOM),Anchorage,AK,2007:1658-1666.
  • 10Tzeveleksa L,Oikonomou K,and Stavrakakis I.Random walk with jumps in large-scale random geometric graphs[J].Computer Communications,2010,33(13):1505-1514.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部