期刊文献+

大规模MIMO时分双工系统的鲁棒预编码设计 被引量:3

Robust Precoding in Massive MIMO Time Division Duplex Systems
下载PDF
导出
摘要 对于采用大规模MIMO技术的时分双工系统,天线互易误差会破坏上下行信道互易特性,大幅降低预编码算法下行传输性能。由于实际系统难以完全消除天线互易误差,该文以最大化各用户平均信泄噪比为目标,根据天线互易误差的统计特性,设计了对该误差具有鲁棒性的线性预编码算法。同时为了进一步降低用户接收端的等效噪声功率,该文还将该线性鲁棒预编码算法扩展为基于矢量扰动的非线性鲁棒预编码算法,并通过减格辅助技术降低其扰动矢量求解复杂度,使其更适用于大规模MIMO系统应用。计算机仿真结果表明在存在基站天线互易误差条件下,该文所提出的线性与非线性鲁棒性预编码算法的性能均优于传统预编码算法的性能。 The downlink transmission performance of the massive MIMO Time Division Duplex (TDD) system is bottlenecked by the channel reciprocity errors called antenna reciprocity errors. Antenna reciprocity errors are hard to be calibrated completely in practical systems. In order to avoid the performance degradation of the downlink transmission, a linear robust precoding algorithm is proposed, which can maximize each user's average Signal to Leakage and Noise Ratio (SLNR) by using the statistical characteristics of the antenna reciprocity errors. To further reduce the equivalent noise power of users, the linear robust precoding algorithm is improved into nonlinear robust precoding algorithm by vector perturbation. Lattice reduction aid is also used to reduce the complexity of the perturbation vector search, and make the nonlinear robust precoding algorithm be available for the massive MIMO. Simulation results show that the proposed linear and nonlinear robust precoding algorithms can achieve better performance than the traditional Zero Forcing (ZF) and SLNR precoding algorithms when antenna reciprocity errors exist.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1180-1186,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61101092) 国家863计划项目(2014AA01A704)资助课题
关键词 无线通信 大规模MIMO 信道互易误差 鲁棒预编码 Wireless communication Massive MIMO Channel reciprocity errors Robust precoding
  • 相关文献

参考文献16

  • 1Larsson E G, :lfvesson F, Edfors O, et al: Massive MIMO for next generation wireless systems[J]. IEEE Communi- cations Magazine, 2014, 52(2): 186-195.
  • 2Hoydis J, Ten Brink S, and Debbah M. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need [J]. IEEE Journal On Selected Areas in Communications, 2013 31(2): 160-171.
  • 3Lu L, Li G, Swindlehurst A, et al: An overview of massive MIMO: benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742-758.
  • 4Rusek F, Persson D, Buon Kiong Lau, et al: Scaling up MIMO: opportunities and challenges with very large arrays [J]. IEEE Signal Processing Magazine, 2013, 30(1): 40 60.
  • 5Alcatel-Lucent. Channel reciprocity modeling and performance evaluation, R1-100426[R]. 3GPP TSG RAN WG1 59 meeting, Valencia, 2012.
  • 6Huang Fan, Wang Ya-feng, and Geng Jian. Antenna mismatch and calibration problem in coordinated multi-point transmission system[J]. IET Communications, 2012, 6(3): 289-299.
  • 7Bj6rnson E, Hoydis J, Kountouris M, et al: Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits[J]. IEEE Transactions on Information Theory, 2014, 48(3): 126-139.
  • 8Shepard C, Yu H, Li E, et al: Argos: practical many-antenna base stations[C]. Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, New York, USA, 2012: 53-64.
  • 9Rogalin R, Bursalioglu O Y, Papadopoulos H C, et al: Hardware-impairment compensation for enabling distributed large-scale MIMO[C]. 2013 Information Theory and Applications Workshop (ITA), San Diego, USA, 2013:1-10 .
  • 10王海荣,王玉辉,黄永明,杨绿溪.大规模MIMO多小区TDD系统中的导频污染减轻方法[J].信号处理,2013,29(2):171-180. 被引量:27

二级参考文献12

  • 1D. Gesbert, M. Kountouris, R. W. Heath Jr., C.-B. Chae, and T. Salzer. Shifting the MIMO paradigm [ J ]. IEEE Signal Process. Mag. , 2007, 24(5) : 36-46.
  • 2T. L. Marzetta. Noncooperative cellular wireless with un- limited numbers of base station antennas [ J ]. IEEE Trans. Wireless Commun. , 2010, 9(11): 3590-3600.
  • 3F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson. Scaling up MIMO: Opportunities and challenges with very large arrays [ J]. Ac- cepted for publication in the IEEE Signal Processing Mag- azine, October 2011. [ Online]. Available: http://arx- iv. org/abs/1201. 3210.
  • 4J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. Reed. Femtocells: Past, present, and future [ J ]. IEEE J. Sel. Areas Commun., Apr. 2012, to appear. [ Online ]. Available: http : //users. ece. utexas, edu/ jandrews/pubs/JSAC FemtoSurvey. pdf.
  • 5Geoffrey Ye Li, Zhikun Xu, Cong Xiong, Chenyang Yang, Shunqing Zhang,Yan Chen, and Shugong Xu. Energy-effi- cient wireless communications: tutorial, survey, and open issues [J]. IEEE Wireless Communications, 2011, 18 (6) : 28-35.
  • 6H. Q. Ngo, E. G. Larsson, and T. L. Marzetta. Ener- gy and spectral efficiency of very large multiuser MIMO systems [J]. IEEE Trans. Commun. , 2012, submitted. [ Online ]. Available: http ://arxiv. org/abs/1112.3810.
  • 7T. L. Marzetta. How much training is required for multi- user MIMO? [ C]. in Proc. Fortieth Asilomar Conference on Signals, Systems and Computers ( ACSSC' 06), 2006. 359 -363.
  • 8J. Hoydis, S. ten Brink, and M. Debbah. Massive MIMO in UL/DL of cellular networks: How many antennas do we need? [J]. 2011, to be submitted. [Online]. Available: http://www, flexible-radio, corn/sites/default/files/publi- cations/11/massiveMIMO_.JSAC12_submitted v2. pdf.
  • 9J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vish- wanath. Pilot contamination and precoding in multi-cell TDD systems [ J ]. IEEE Trans. Wireless Commun. , 2011,10(8) : 2640-2651.
  • 10K. Appaiah, A. Ashikhmin, T. L. Marzetta. Pilot Con-tamination Reduction in Multi-User TDD Systems [ C ]. in Proc. IEEE International Conference on Communications (ICC'10), CapeTown, South Africa, 2010. 1-5.

共引文献26

同被引文献26

  • 1GESBERT D,KOUNTOURIS M,HEATH R W,et al.Shifting the MIMO paradigm[J].IEEE Signal Processing Magazine,2007,24(5):36-46.
  • 2MARZETTA T L.Noncooperative cellular wireless with unlimited numbers of base station antennas[J].IEEE Transactions on Wireless Communications,2010,9(11):3590-3600.doi:10.1109/TWC.2010.092810.091092.
  • 3QUOC N H,LARSSON E G,and MARZETTA T L.Energy and spectral efficiency of very large multiuser MIMO systems [J].IEEE Transactions on Communications,2013,61(4):1436-1449.doi:10.1109/TCOMM.2013.020413.110848.
  • 4LUO Z Q and YU W.An introduction to convex optimization for communications and signal processing[J].IEEE Journal on Selected Areas in Communications,2006,24(8):1426-1438.doi:10.1109/JSAC.2006.879347.
  • 5RUSEK F,PERSSON D,LAR B K,et al.Scaling up MIMO:opportunities and challenges with very large arrays[J].IEEE Signal Processing Magazine,2013,30(1):40-60.doi:10.1109/ MSP.2011.2178495.
  • 6SANDEROVICH A,SHAMAI S,and STEINBERG Y.Distributed MIMO receiver-achievable rates and upper bounds[J].IEEE Transactions on Information Theory,2009,55(10):4419-4438.doi:10.1109/TIT.2009.2027579.
  • 7MUDUMBAI R,BROWN D R,MADHOW U,et al.Distributed transmit beamforming:challenges and recent progress[J].IEEE Communications Magazine,2009,47(2):102-110.doi:10.1109/MCOM.2009.4785387.
  • 8TRUONG K T and HEATH R W.The viability of distributed antennas for massive MIMO systems[C].Conference on Signals,Systems and Computers,Asilomar,2013:1318-1323.
  • 9SADEGHI M,CHAU Y,and YONG H C.Sum rate maximization for uplink distributed massive MIMO systems with limited backhaul capacity[C].IEEE Global Communications Conference,Austin,USA,2014:308-313.
  • 10SANAYEI S and NOSRATINIA A.Antenna selection in MIMO systems[J].IEEE Communications Magazine,2004,42(10):68-73.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部