期刊文献+

基于马尔可夫随机场的非监督声呐图像分割方法 被引量:6

Unsupervised sonar image segmentation method based on Markov random field
下载PDF
导出
摘要 针对声呐图像的特点,提出了一种新的基于马尔可夫随机场(MRF)的非监督声呐图像自动分割方法。研究发现,声呐图像混响区基本上都服从高斯分布,然而,其直方图离散化的分布效果不利于图像的自动分割,因此,通过一种快速有效的高斯金字塔模型对声呐图像进行预处理,使得处理后的声呐图像的海底混响区直方图服从高斯分布。在此基础上提出了一个能够自动确定声呐图像分类个数的模型,并通过该模型结合一种局部能量极值化的方法对马尔科夫模型的初始化参数进行估计,从而形成一种完全自动的声呐图像分割模型。最后,利用该模型对声呐图像数据进行了分割实验,并和其他典型的分割算法进行了比较,验证了该方法的有效性及快速性。 Utilizing the characteristics of sonar images, a new unsupervised method is proposed to segment sonar im-ages automatically based on Markov random field( MRF) .The research demonstrated that the histogram of sonar im-ages in reverberation area obeys the rule of Gaussian distribution.However, its discrete distribution effect is not beneficial to the automatic segmentation.In this paper, a fast and effective Gaussian pyramid model is used for the preprocessing of sonar image, in an attempt to make the histogram of the bottom reverberation of these images obey Gaussian distribution.On this basis, a model that may automatically determine the number of sonar images classifi-cation is proposed.By combining this model with a local energy extremum method, the initialization parameters of the MRF model were estimated to form a fully automated sonar image segmentation model.Finally, the model can be used for segmentation experiments on the data of sonar images, and it is compared with other typical segmenta-tion algorithms, verifying the efficiency and rapidity of the method.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第4期516-521,共6页 Journal of Harbin Engineering University
基金 黑龙江省自然科学基金资助项目(F201416)
关键词 声呐图像 MRF 图像分割 高斯金字塔 预处理 局部能量极值化 sonar image MRF image segmentation Gaussian pyramid preprocessing extremum of local energy
  • 相关文献

参考文献12

  • 1LANGNER F, KNAUER C, JANS W, et al. Side scan sonar image resolution and automatic object detection, classifica- tion and identification [ C ]//Oceans 2009-Europe. Berlin, Germany, 2009 : 1-8.
  • 2LIU G Y, BIAN H Y, SHI H. Sonar image segmentation based on spectral matting using morphological operations [ J ]. Journal of Jilin University: Engineering and Technology Edition, 2012, 42(1): 228-233.
  • 3GEMAN S, GEMAN D. Stochastic relaxation, Gibbs distri- butions, and the Bayesian restoration of images [ J ]. IEEE Trans Patten Anal Machine Intel, 1984, 6: 721-741.
  • 4MIGNOTrE M, COLLET C, PEREZ P, et al. Sonar image segmentation using an unsupervised hierarchical MRF model [ J ]. IEEE Transactions on Image Processing, 2000, 9 (7) : 1216-1231.
  • 5阳凡林,独知行,李家彪,吴自银,初凤友.基于MRF场的侧扫声呐图像分割方法[J].海洋学报,2006,28(4):43-48. 被引量:12
  • 6WANG Xingmei, YE Xiufen, ZHANG Zhehui, et al. A no-vel automatic segmentation algorithm for sonar imagery [ C ]//Proceedings of the 2008 IEEE International Confer- ence on Mechatronics and Automation (ICMA 2008). Taka- matsu, Japan, 2008: 336-341.
  • 7尹芳,陈德运,吴锐.改进的谱聚类图像分割方法[J].计算机工程与应用,2011,47(21):185-187. 被引量:6
  • 8汪西莉,刘芳,焦李成.基于不完全分层MRF的非监督图象分割[J].电子学报,2004,32(7):1086-1089. 被引量:3
  • 9MANDHOUJ I, AMIRI H, MAUSSANG F, et al. Sonar im- age processing for underwater object detection based on high resolution system[ C ]//SIDOP 2012: 2nd Workshop on Sig- nal and Document Processing. Hammamet, Tunisia, 2012: 5-10.
  • 10YAO K C, MIGNOTrE M, COLLET C, et al. Unsuper- vised segmentation using a self-organizing map and a noise model estimation in sonar imagery [ J ]. Pattern Recogni- tion, 2000, 33(9) : 1575-1584.

二级参考文献28

  • 1陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 2匡锦瑜,王颖.多尺度边缘检测与图像分割的马尔可夫随机场模型[J].北京师范大学学报(自然科学版),1996,32(3):325-329. 被引量:3
  • 3Kapurj N, Sahoop K, Wong A K C.A new method for gray-level picture thresholding using the entropy of the histogram[J].Com-puter Vision, Graphics, and Image Processing, 1985,29 (3) : 273 -285.
  • 4Glasbey C A.An analysis of histogram-based thresholding algo-rithms[J].CVGIP:Graphical Models and Image Processing, 1993, 55(6) :532-537.
  • 5Abramovich F, Benjamini Y.Adaptive thresholding of wavelet co-efficients[J].Computational Statistics & Data Analysis, 1996,22: 351-361,.
  • 6Gatos B, Pratikakis 1, Perantonis S J.Adaptive degraded document image binarization[J].Pattern Recognition,2006,39(3):317-327.
  • 7Dai Mo,Baylou P,Humbert L,et al.lmage segmentation by a dy-namic thresholding using edge detection based on cascaded uni-form filters[J].Signal Processing, 1996,52( 1 ) :49-63.
  • 8Chen Qiang, Sun Quansen, Heng P A, et al.A double-threshold im-age binarization method based on edge detector[J].Pattem Rec-ognition, 2008,41 (4) : 1254-1267.
  • 9Wu Z Y, Leahy R.An optimal graph theoretic approach to data clustering:theory and its application to image segmentation[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1993, 15(11):1101-1113.
  • 10Shi Jianbo, Malik J.Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8) : 888-905.

共引文献18

同被引文献65

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部