期刊文献+

基于稀疏表示的正则化超分辨率重建算法 被引量:4

Regularized super-resolution reconstruction algorithm based on sparse representation
下载PDF
导出
摘要 为了能在超分辨率重建过程中更好地保留图像的边缘及纹理等特性,提出基于稀疏表示的正则化超分辨率重建算法.首先通过K-SVD方法得到单一的超完备字典,然后在此基础上进行改进得到高、低分辨率的字典,并在重建过程中通过自适应选取正则化参数的方法动态调节目标函数中重建误差逼近项和稀疏性约束项,从而实现超分辨率重建.通过仿真实验验证该算法能够有效地提高重建图像的质量. In order to obtain better image edge and texture features in the process of super-resolution re- construction, a regularized super-resolution reconstruction algorithm is proposed based on sparse represen- tation. A single super-complete dictionary is obtained first by K-SVD method and then improved to get dictionaries with high and low resolutions. The terms of reconstruction error approximation and sparse constraint in objective function are dynamically adjusted by means of adaptively selecting the regularization parameter in the process of reconstruction, so that the super-resolution reconstruction is realized. It is ver- ified by simulation experiment that the reconstruction image quality can be improved with the algorithm.
出处 《兰州理工大学学报》 CAS 北大核心 2015年第2期103-106,共4页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(11112RJZA028) 甘肃省高校基本科研项目(1203ZTC061)
关键词 超分辨率重建 稀疏表示 K-SVD 正则化 super-resolution reconstruction sparse representation K-SVD regularized
  • 相关文献

参考文献12

  • 1刘梓,宋晓宁,於东军,唐振民.基于多成分字典和稀疏表示的超分辨率重建算法[J].南京理工大学学报,2014,38(1):1-5. 被引量:15
  • 2IRANI M, PELEG S. Improving resolution by image registra- tion [J]. CVGIP: Graphical Models and Image Processing, 1991,53(3) : 231-239.
  • 3禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 4PATTI A J,SEZAN M I,TEKALP A NL Superresolution vide reconstruction with arbitrary sampling lattices and nonzero ap- erture time [J]. IEEE Transactions on Image Processing, 1997,6(8) : 1064-1076.
  • 5PATANAVIJIT V,JITAPUNKUL S. An iterative super-reso- lution reconstruction of image sequences using fast affine block-based registration with BTV regularization [C]//Pro- ceedings of IEEE Asia Pacific Conferenca on Circuits and Sys- tems. Singapore: IEEE, 2006 : 1717-1720.
  • 6FREEMAN W T, P,a.S'I'OR E C, CARMICHAEL O T. Learning low-l.evel vision [J]., International Journal of Comput- er VisionSpecial Issue on Statistical and Computational Theo- ries of VisionModeling, Learning, Sampling and Computing: Part I ,2000,40(1) :25-47.
  • 7FREEMAN W T, PASZTOR E C, CARMICHAEL O T. Ex- ample-based super-resolution [J]. IEEE Computer Graphics and Application,2002,22(2) :56-65.
  • 8YANG j C,WRIGHT J, HUANG T S, et al. Image super reso- lution as sparse representation of raw image patches [C]// Proceedings of IEEE Conference on Computer Vision and Pat- tern Recognitiom Ires Alamitos: IEEE Computer Society Press, 2008:1-8.
  • 9YANG J,WRIGHT J, HUANG T ,et al. Image super-resolu- tion via sparse representation [J]. IEEE Transactions on Image Processing,2010,19(11) :2861-2873.
  • 10AHARON M, ELAD M, BRUCKSTEIN A. K-SVD an algo- rithm for designing overcomplete dictionaries for sparse rep- resentation [J]. IEEE Trans Signal Process, 2006, 54 (11): 4311-4322.

二级参考文献39

  • 1张晓玲,沈兰荪.超分辨率图像复原技术的研究进展[J].测控技术,2005,24(5):1-5. 被引量:20
  • 2骞森,朱剑英.基于奇异值分解的图像质量评价[J].东南大学学报(自然科学版),2006,36(4):643-646. 被引量:20
  • 3胡乡峰,卫金茂.基于奇异值分解(SVD)的图像压缩[J].东北师大学报(自然科学版),2006,38(3):36-39. 被引量:17
  • 4肖泽龙,许建中,彭树生,纪如霆.基于凸集投影算法的被动毫米波图像超分辨率恢复[J].南京理工大学学报,2007,31(3):355-358. 被引量:5
  • 5BOULGOURIS N V, TZOVARAS D, STRINNTZIS M G. Lossless image compression based on optimal prediction, adaptive lifting, and conditional arithmetic coding [J ]. IEEE Transactions on Image Processing, 2001,10 (1) : 1-14.
  • 6AMIR,WILLIAM A P. An image multire solution representation for lossless and lossy compression [J]. IEEE Trans Image Processing, 1996,5(9):1303-1310.
  • 7Aleksandr Shnayderman, Alexander Gusev, Ahmet M. Eskicioglu. An SVD-based grayscale image quality measure for local and global assessment [J] . IEEE Transactions on Image Processing, 2006,15 (2) : 45-52.
  • 8Tsai R Y,Huang T S.Multiframe image restoration and registration.Advances in Computer Vision and Image Processing,1984,1:317~339
  • 9Stark H,Oskoui P.High resolution image recovery from image-plane arrays using convex projections.Journalof the Optical Society of America A,1989,6(11):1715~1726
  • 10Patti J,Sezan M I,Tekalp A M.Super-resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time.IEEE Transactions on Image Processing,1997,8(6):1064~1076

共引文献49

同被引文献16

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部