期刊文献+

基于极限学习机的图像压缩算法 被引量:2

Image Compression Algorithm Based on Extreme Learning Machine
下载PDF
导出
摘要 神经网络具有并行分布处理、自学习、自适应和很强的鲁棒性及容错性等优点,已被广泛应用于图像压缩领域,为图像压缩提供了一个新途径。极限学习机是一种单隐层前向神经网络算法,与传统神经网络算法相比,具有学习速度快、泛化能力强等优点。文中旨在提出一种基于极限学习机的图像压缩算法。该算法主要利用极限学习机的非线性映射能力,对图像进行压缩编码和解码。首先利用极限学习机通过学习构建一个用于图像压缩的单隐层前向神经网络模型,其次利用该模型实现图像压缩和图像重建。实验结果表明,在相同压缩比下,所提算法的重建效果优于BP神经网络,并且具有较快的学习速度。 With the advantages of parallel distributed processing,self-learning,self-adaption and strong robustness and fault tolerance, neural networks have been widely used in image compression,which provide a new approach to image compression. Extreme learning ma-chine is a single hidden layer feedforward neural network algorithm,and has faster learning speed and better generalization performance than traditional neural network algorithms. In this paper,aim at proposing an image compression algorithm based on extreme learning ma-chine. The algorithm achieves image compression coding and decoding with the nonlinear mapping capability of extreme learning ma-chine. Firstly,a single hidden layer feedforward neural network model for image compression is established through training the samples by using extreme learning machine. And then the model is used to compress and reconstruct image. The simulation results show that this algorithm has better reconstruction performance and faster learning speed than BP neural network.
出处 《计算机技术与发展》 2015年第5期13-16,共4页 Computer Technology and Development
基金 国家青年科学基金项目(31300473) 福建省自然科学基金项目(2014J0101)
关键词 图像压缩 单隐层前向神经网络 极限学习机 MATLAB仿真 image compression single hidden layer feedforward neural network extreme learning machine Matlab simulation
  • 相关文献

参考文献16

  • 1吴乐南.数据压缩原理与应用[M].北京:电子工业出版,2003..
  • 2Gonzalez R C.数字图像处理[M].阮秋琦,阮宇智,译.北京:电子工业出版社,2005.
  • 3许锋,卢建刚,孙优贤.神经网络在图像处理中的应用[J].信息与控制,2003,32(4):344-351. 被引量:49
  • 4Sicuranza G L, Ramponi G, Marsi S. Artificial neural net- work for image compression [ J ]. Electronics Letters, 1990, 26(7 ) :477-479.
  • 5Mougeot M, Azencott R, Angeniol B. Image compression with back propagation:improvement of the visual restoration using different cost functions [ J ]. Neural Networks, 1991,4 (4) :467-476.
  • 6Reddy K S N, Vikram B R, Rao L K, et al. Image compres- sion and reconstruction using a new approach by artificial neural network [ J ]. International Journal of Image Process-ing,2012,6 (2) :68-85.
  • 7Gaidhane V H, Singh V, Hote Y V, et al. New approaches for image compression using neural network [ J ]. Journal of In- telligent Learning Systems and Applications, 201 l, 3 (4) :220 -229.
  • 8Seiffert U. ANNIE- artificial neural network- based image encoder [ J ]. Neurocomputing, 2014,125 : 229 -235.
  • 9张建宏.基于混沌神经网络的图像压缩算法[J].煤炭技术,2010,29(5):167-168. 被引量:2
  • 10钱海军.基于BP神经网络的图像压缩的Matlab实现[J].电脑开发与应用,2011,24(12):77-79. 被引量:10

二级参考文献72

  • 1姚文俊.基于Matlab的遗传算法的工具箱的研究及改进[J].现代电子技术,2004,27(9):36-38. 被引量:7
  • 2张锐菊,周诠.神经网络用于遥感图像压缩的一些研究结果[J].中国体视学与图像分析,2003,8(3):183-186. 被引量:3
  • 3修春波,刘向东,张宇河,唐运虞.一种新的混沌神经网络及其应用[J].电子学报,2005,33(5):868-870. 被引量:16
  • 4朱艳秋,陈贺新,戴逸松.彩色图像三维矩阵变换压缩编码[J].电子学报,1997,25(7):16-21. 被引量:22
  • 5Christini,D.J&Coltins.J.J, Using chaos control and tracking to suppress a athological nonchaotic rhythm in a cardiac model [J].Phys.Rev.1996,53,(49).
  • 6Li Jin, Shawm in Lei. An embedded still image coder with rate distortion optimization [J]. IEEE Trans on Image Processing. 1999,8(7):913-924.
  • 7Simoncelli E P, Buccigrossi R W. Embedded wavelet image compression based on a joint probability model [A].In:Proc of Fourth Int'l Conf on Image[C], Santa Barbara,CA,USA,1997,1: 640-643.
  • 8DavidF.R.ogers.计算机图形学算法基础[M].北京:电于工业出版社.2002.
  • 9Milan Sonka, Vaelav Hlavac, Roger Blyle. Image Precessing, Analysis, and Machine Vision[M]. 北京:电子工业出版社.2001.
  • 10Lee C C, Degyves J P. Color image processing in a cellular neu-rid-network environment [ J ]. IEEE Transactions on Neural Networks, 1996,7(5) :1086 - 1098.

共引文献96

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部