期刊文献+

基于DCT系数统计特性的HEVC视频双压缩检测算法 被引量:2

Detection of double compression in HEVC videos based on the statistical characteristic of DCT coefficient
原文传递
导出
摘要 功能强大和使用简易的视频编辑软件可能会使数字视频遭受到各种不同形式的篡改,视频的真实性和完整性无法得到保证。双压缩是视频篡改的必要条件,双压缩检测则是视频取证的重要辅助手段。通过分析压缩过程中由量化误差引起的离散余弦变换(DCT)系数变化,提出了一种不同量化参数下的高效视频编码(HEVC)视频双压缩检测算法,利用DCT系数直方图和相邻DCT系数对奇偶组合统计特性构造22维联合特征集,最后将特征集用支持向量机(SVM)进行分类识别。实验结果证明了本文算法的有效性。 With the wide spreading of powerful and easy-to-use video editing software,digital videos are exposed to lots of different tampering kinds which destroy the authenticity and integrity of videos. Since double compression is necessary to video tampering,the detection of double compression is an important supplementary means for digital video forensics. By analyzing changes in discrete cosine transform (DCT) coefficients caused by quantization, an algorithm of detecting double compression for high effi- ciency video coding (HEVC) videos in different quantization parameters is proposed,which employs 22- dimensional union feature set consisting of the DCT histogram and the parity group statistics of DCT co- efficient-pair,and then the feature set is sent to support vector machine (SVM) classification to distin- guish double compression videos from single compression videos. Experimental verify show the effective- ness of the algorithm.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第4期733-739,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61170137 61301247 61300055) 浙江省自然科学基金(LY13F020013) 浙江省重中之重学科开放基金(xkx11405) 宁波市自然科学基金(2013A610059) 宁波大学优秀学位论文培育基金(py2013005)资助项目
关键词 数字取证 高效视频编码(HEVC)视频 双压缩检测 离散余弦变换(DCT)系数直方图 相邻DCT系数对奇偶组合 支持向量机(SVM) digital forensic high efficiency video coding (HEVC) video detection of double compres-sion histogram of discrete cosine transform (DCT) coefficients parity of DCT coefficient-pair supportvector machine (SVM)
  • 相关文献

参考文献14

  • 1杨锐,骆伟祺,黄继武.多媒体取证[J].中国科学:信息科学,2013,43(12):1654-1672. 被引量:24
  • 2Gary J. Sullivan, ens-Rainer Ohm, Woo-Jin Han, et al. O- verview of the high efficiency video coding (HEVC) standard[J]. IEEE Transactions on Circuits and Systems for Video Technology. 2012,12(22) : 1649-1668.
  • 3Alin C Popescu, Hany Farid. Statistical tools for digital image forensics [D]. Dartmouth College, Hanover, NH, USA,2004.
  • 4FU Dong-d0ng,SHI Yun-qing,SU Wei. A generalized Ben- ford's law for JPEG coefficients and its applications in im- age forensics[C]. Proceedings of the 9th Conference on Security,Steganography and Watermarking of Multimedia Contents IX[O-I. 2007,6505 : L5051.
  • 5Chen C H, Shi Y Q, Su W. A machine learning based scheme for double JPEG compression detection [A]. Proc. of Int. Conf. Pattern Recognit. (ICPR), 2008,1814- 1817.
  • 6张玉金,袁野,王士林,李生红,赵旭东.基于条件共生概率矩阵的移位JPEG双压缩检测[J].光电子.激光,2012,23(10):1932-1939. 被引量:3
  • 7高铁杠,杨富圣,盛国瑞.一种新的基于DCT域系数对直方图的图像篡改取证方法[J].光电子.激光,2014,25(11):2196-2202. 被引量:8
  • 8WANG Wei-hong, Farid H. Exposing digital forgeries in video by detecting double MPEG compression[A]. Proc. of the Multimedia and Security Workshop Geneva[C]. 2006,37-47.
  • 9Chen W,Shi Y Q, Detection of double MPEG compression based on first digit statistics[A]. Proc. of Lect. Notes Comput. Sci. (IWDW 2008) [C]. 2009,5450 : 16-30.
  • 10王琬,蒋兴浩,孙锬锋.基于首位数字特征的双重MPEG压缩检测算法[J].电子与信息学报,2012,34(12):3046-3050. 被引量:4

二级参考文献87

  • 1Comesana P, Merhav N, Barni M. Asymptotically optimum universal watermark embedding and detection in the high- SNR regime[J]. IEEE Transactions on Information Theo- ry, 2010,56(6) : 2804-2815.
  • 2Feng X,Zhang H,Wu H,et al. A new approach for optimal multiple watermarks injection[J]. IEEE Signal Processing Letters,2011,18(10) :575-578.
  • 3Bhatnagar G, Raman B, Wu Q M J. Robust watermarking using fractional wavelet packet transform[J], lET Image Processing, 2012,6(4) : 386-397.
  • 4Kwitt R, Meerwald P, Uhl A. Lightweight detection of ad- ditive watermarking in the DWT-Domain[J]. IEEE Trans- actions on Image Processing,2011,20(2):474-484.
  • 5Farid H. A survey of image forgery detection[J]. IEEE Signal Processing Magazine, 2009,2(26) : 16-25.
  • 6Lin Z, He J, Tang X, et al. Fast, automatic and fine-grained tampered JPEG image detection via DOT coefficient anal- ysis[J]. Pattern Recognition, 2009,42 (11) : 2492-2501.
  • 7Luo W,Huang J,Qiu G. JPEG error analysis and its appli- cations to digital image forensics[J]. IEEE T.ransactions on Information Forensics and Security, 2010,5 (3) : 480- 491.
  • 8Farid H. Exposing digital forgeries from JPEG ghosts[J]. IEEE Transactions on Information Forensics and Security, 2009,4(1) :154-160.
  • 9Huang F,Huang J, Shi Y Q. Detecting double JPEG com- pression with the same quantization matrix [J]. IEEE Transactions on Information Forensics and Security, 2010,5(4) :848-856.
  • 10Popescu A C. Statistical tools for digital image forensics [D]. Dartmouth College, Hanover, NH, USA, 2004.

共引文献103

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部