期刊文献+

基于RD-SVM的肿瘤信息基因选择算法 被引量:4

TUMOUR INFORMATIVE GENE SELECTION ALGORITHM BASED ON RD-SVM
下载PDF
导出
摘要 为了从高维、小样本的基因表达数据中有效地选择特征基因,消除与肿瘤分类无关的数据,提出一种随机矩阵替换与支持向量机的肿瘤信息基因选择算法(RD-SVM)。首先构建多组0/1随机向量表示的信息基因子集,并以支持向量机构建分类器评价每组子集的优劣,然后考虑各特征之间的相互作用,以0、1替换策略对基因子集评估,并找到最优基因子集,最后采用5个肿瘤信息基因表达谱数据对算法性能进行测试。结果表明,相对于参比算法,RD-SVM算法不仅提高了肿瘤信息基因的识别精度,同时所选信息基因最少。 In order to select characteristic genes effectively from gene expression data with high dimensionality and small sample, and to eliminate tumour classification-independent data, we propose a tumour informative gene selection algorithm (RD-SVM) which is based on ran- dom matrix replacement and support vector machine. First, we construct the subsets of informative genes represented by groups of 0/1 random vectors, and constructs the classifier by support vector machine to evaluate the performance of each group of subset; then by considering inter- actions between each characteristic ,we assess the gene subsets by the strategy of 0/1 replacement and finds the best gene subset; finally,we use five spectral data of tumour informative genes expression to test algorithm' s performance. Result shows that RD-SVM algorithm improves the recognition accuracy of tumour informative genes with minimum number of genes selected compared with the reference methods.
出处 《计算机应用与软件》 CSCD 2015年第5期310-313,共4页 Computer Applications and Software
基金 广东省高新技术产业化项目(2012B010100050) 东莞市高等院校科研机构科技计划重点项目(2011108101010)
关键词 基因选择 肿瘤表达谱 信息基因 支持向量机 Gene selection Tumour expression spectrum Informative gene Support vector machine
  • 相关文献

参考文献15

  • 1Saeys Y, Lnza I, Larrafiaga P. A review of feature selection technique in bioinformatics [J] Bi0informatics,2007,23(19) :2507 -2517.
  • 2李菊,刘晓平,谢从华.改进的特征选择算法在形状分析中的应用[J].合肥工业大学学报(自然科学版),2012,35(3):334-336. 被引量:2
  • 3刘海峰,陈琦,张以皓.一种基于互信息的改进文本特征选择[J].计算机工程与应用,2012,48(25):1-4. 被引量:15
  • 4朱红萍,巩青歌,雷战波.基于遗传算法的入侵检测特征选择[J].计算机应用研究,2012,29(4):1417-1419. 被引量:27
  • 5Pomeroy S L, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression [ J]. Nature ,2012,41 (5) :436 - 442.
  • 6Brucker P, Burke E K,Groenemeyer S. A branch and bound algorithm for the cyclic job -shop problem with transportation [ J]. Computers & Operations Research,2012,39 ( 12 ) : 3200 - 3214.
  • 7Zou H, Hastie T. Regularization and variable selection via the elastic net [ J ]. Journal of the Royal Statistical Society: Series B, 2005,67 (2) :301 -320.
  • 8Geman D, d' Avignon C, Naiman D, et al. Classifying Gene Expression Profiles from Pairwise mRNA Comparisons [ J ]. Statistical Applica- tions in Genetics and Molecular Biology,2010,3 ( 1 ) : 1544 - 6115.
  • 9Chang ChihChung, Lin ChihJen. LIBSVM : a library for support vector machines[R]. ACM Transactions on Intelligent Systems and Technolo- gy,2:27 : 1 - 27:27,2011.
  • 10Badea L,Herlea V,Dima S O,et al. Combined gene expression analy- sis of whole-tissue and micro dissected pancreatic ductal adenocarcino- ma identifies genes specifically over expressed in tumor epithelia [ J~. Hepato-gastroenterology ,2008,55 ( 8 ) :2016 - 2026.

二级参考文献39

共引文献60

同被引文献38

  • 1Golub T R, Slonim D K, Tamayo P, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring I J]. Science, 1999,286(114) :307-314.
  • 2Liu Huiqing, Li Jinyan, Wong L. A Comparative Study on Feature selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns ~ J 1. Genome Informatics, 2002,13 : 51-60.
  • 3Li Shutao, Wu Xixian, Tan Mingkui. Gene Selection Using Hybrid Particle Swarm Optimization and Genetic Algo- rithm [ J]. Soft Computing ,2008,12 ( 11 ) :1039-1048.
  • 4Li R. Medical Image Segmentation Based on Watershed Transformation and Rough Sets~ C ~//Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering. Washington D. C., USA ~ IEEE Press',2010 : 1-5.
  • 5Maji P, Paul S. Rough Set Based Maximum Relevance- maximum Significance Criterion and Gene Selection from Microarray Data I J ]. International Journal of Approximate Reasoning, 2011,52 ( 3 ) :408-426.
  • 6Lin T Y, Lin T Y. Granular Computing on Binary Relations I:Data Mining and Neighborhood Systems E J]. Rough Sets in Knowledge Discovery, 1998, (2) : 165-166.
  • 7Kennedy J, Eberhart R zation [ C ]//Proceedings of ference on Neural Networks IEEE Press, 1995 : 1942-1948.
  • 8Particle Swarm Optimi- IEEE International Con- Washington D. C., USA: Kennedy J,Eberhart R C. A Discrete Binary Version of the Particle Swarm Algorithm [ C ]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA : IEEE Press, 1997 :4104-4108.
  • 9Alon U,Barkai N,Notterman D A,et al. Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligon- ucleotide Arrays I J]. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(12) : 6745-6750.
  • 10Li Shutao,Wu Xixian, Hu Xiaoyan. Gene Selection Using Genetic Algorithm and Support Vectors Machines[J]. Soft Computing,2008,12 ( 7 ) : 693-698.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部