期刊文献+

基于区域极值点的时间序列聚类算法 被引量:6

Clustering Algorithm for Time Series Based on Locally Extreme Point
下载PDF
导出
摘要 相异性或相似性度量是数据挖掘领域中的2个基本问题。针对时间序列的相异性度量问题,给出时间序列的区域半径、区域极值点、区域等定义,提出一种区域极值点提取策略。通过提取有代表性的极值点以起到对时间序列数据约简和压缩的作用,进一步定义时间序列的动态时间弯曲距离度量其相异性。以此为基础提出一种新的时间序列层次聚类算法。仿真实验结果表明,与时间序列趋势特征提取等算法相比,该算法在数据的压缩效果和聚类准确率方面均有明显提高。 Dissimilarity or similarity is the key issue in data mining. data is hard to measure because of its original structure. Aiming at the problem of time series similarity measure,this paper proposes a re-description method based on locally extreme point of time series. In which,the original time series is described by extracting the locally extreme points from time series,reflecting the main features of the time series effectively and achieving the compression of time series data. Measuring the extreme series after equal-length treatment enhances the flexibility of the algorithm,and reduces its limitations. Based on the above,it is applied to hierarchical clustering of the time series. Simulation experimental results show that the clustering effect and data compression is obvious,and the clustering accuracy greatly improves compared with other algorithms based on time series trend features extraction.
作者 孙雅 李志华
出处 《计算机工程》 CAS CSCD 北大核心 2015年第5期33-37,共5页 Computer Engineering
基金 中央高校基本科研业务费专项基金资助项目(JUSRP211A41) 江苏省产学研前瞻基金资助项目(BY2013015-23)
关键词 时间序列 区域极值点 重描述 数据压缩 相似性度量 层次聚类 time series locally extreme point re-description data compression similarity measure hierarchical clustering
  • 相关文献

参考文献17

  • 1Fu Tak Chung.A Review on Time Series Data Mining[J].Engineering Application of Artificial Intelligence,2011,24(1):164-181.
  • 2Krawczak M,Szkatua G.Time Series Envelopes for Classification[C]//Proceedings of IEEE International Conference on Intelligent Systems.London,UK:IEEE Press,2010:156-161.
  • 3Deepa V K,Geetha J R R.Rapid Development of Applications in Data Mining[C]//Proceedings of 20131nternational Conference on Green High Performance Computing.New Delhi,India:[s.n.],2013:145-152.
  • 4国宏伟,高学东,王宏.基于异时间窗划分的时间序列聚类[J].计算机工程,2007,33(21):3-5. 被引量:6
  • 5闫相斌,李一军,崔广斌.事件预测的时间序列数据挖掘方法[J].计算机工程,2006,32(5):29-31. 被引量:4
  • 6Chan K,Fu A W.Efficient Time Series Matching by WAEPlets[C]//Proceedings of the 15th IEEE International Conference on Data Engineering.Sydney,Australia:IEEE Press,1999:117-126.
  • 7余璟明,何希琼,程冬爱.基于离散小波变换的时间序列数据挖掘[J].计算机应用,2005,25(3):652-653. 被引量:3
  • 8Shen Jun,Bao Shudi.The PLR-DTW Method for ECG Based Biometric Identification[C]//Proceedings of the33rd Annual International Conference.Boston,USA:IEEE Press,2011:541-555.
  • 9Lin J,Keogh E,Lonardi S,et al.A Symbolic Represent-ation of Time Series with Implications for Streaming Algorithms[C]//Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.San Diego,USA:IEEE Press,2003:2-11.
  • 10Kengh E,Chakrabarti K,Pazzani M,et al.Dimensionality Reduction for Fast Similarity Search in Time Series Databases[J].Journal of Knowledge and Information System,2001,3(3):263-286.

二级参考文献56

共引文献1121

同被引文献51

引证文献6

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部