期刊文献+

基于改进K-SVD和非局部正则化的图像去噪 被引量:10

Image Denoising Based on Improved K- SVD and Non- local Regularization
下载PDF
导出
摘要 K-奇异值分解(K-SVD)算法在强噪声下的去噪性能较差。为此,提出一种新的图像去噪算法。使用相关系数匹配准则和噪声原子裁剪方法改进传统K-SVD算法,提高原算法的去噪性能,将非局部正则项融入图像去噪模型,并采用非局部自相似性进一步改善图像的去噪效果。实验结果表明,与传统K-SVD算法相比,该算法在提高同质区域平滑性的同时,能保留更多的纹理、边缘等细节特征。 In view of the poor performance of the K-Singular Value Decomposition( K-SVD) denoising method,a new algorithm is proposed. The denoising performance is improved by the refined K-SVD method with the help of the correlation coefficient matching criterion and dictionary cutting method. By combining the non-local self-similarity as a constrained regularization into the image denoising model,the performance is further enhanced. Experimental results show that compared with traditional K-SVD method, this algorithm can effectively improve the smoothness of homogeneous regions with preserving more texture and edge details.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第5期249-253,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61372145)
关键词 图像去噪 稀疏表示 奇异值分解 正交匹配追踪算法 字典优化 非局部自相似性 image denoising sparse representation Singular Value Decomposition ( SVD ) Orthonomal MatchingPursuit (OMP) algorithm dictionary optimization non-local self-similarity
  • 相关文献

参考文献16

  • 1Elad M.Sparse and Redundant Representations:From Theory to Applications in Signal and Image Processing[M].Berlin,Germany:Springer,2010.
  • 2Candes E J,Donoho D L.Recovering Edges in Ill-posed Inverse Problems:Optimality of Curvelet Frames[J].Annals of Statistics,2002,30(3):784-842.
  • 3孙林慧,杨震.基于数据驱动字典和稀疏表示的语音增强[J].信号处理,2011,27(12):1793-1800. 被引量:14
  • 4Aharon M,Elad M,Bruckstein A M.K-SVD and Its Nonnegative Variant for Dictionary Design[C]//Proceedings of International Society for Optics and Photonics.San Diego,USA:Society of Photo-optical Instrumentation Engineers,2005.
  • 5Lee R J,Nicewander W A.Thirteen Ways to Look at the Correlation Coefficient[J].The American Statistician,1988,42(1):59-66.
  • 6Chen Lixia,Liu Xujiao.Nonlocal Similarity Based Coupled Dictionary Learning for Image Denoising[J].Journal of Computational Information Systems,2013,9(11):4451-4458.
  • 7Zhang Jian,Liu Shaohui,Xiong Ruiqin,et al.Improved Total Variation Based Image Compressive Sensing Recovery by Nonlocal Regularization[C]//Proceedings of IEEE International Symposium on Circuits and Systems.Washington D.C.,USA:IEEE Press,2013:2836-2839.
  • 8Donoho D L,Tsaig Y,Drori I,et al.Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit[J].IEEE Transactions on Information Theory,2012,58(2):1094-1121.
  • 9赵海峰,鲁毓苗,陆明,陈思宝.基于快速稀疏表示的医学图像压缩[J].计算机工程,2014,40(4):233-236. 被引量:6
  • 10Protter M,Elad M.Image Sequence Denoising via Sparse and Redundant Representations[J].IEEE Transactions on Image Processing,2009,18(1):27-35.

二级参考文献33

  • 1Buades A, Coll B, Morel J M. A Review of Image Denoising Algorithms with a New One[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
  • 2Buades A, Coll B, Morel J M. Image Denoising Methods. A New Nonlocal Principle[J]. SIAM Review, 2010, 52(1): 113-147.
  • 3Lai Rui, Dou Xuan-xuan. Improved Non-local Means Filtering Algorithm for Image Denoising[C] //Proc. of CISP’10. Yantai, China: [s. n.] , 2010.
  • 4Tian Jing, Yu Weiyu, Xie Shengli. On the Kernel Function Selec- tion of Nonlocal Filtering for Image Denoising[C] //Proc. of IEEE Int’l Conf. on Machine Learning and Cybernetics. Kunming, China: [s. n.] , 2008.
  • 5Buades A, Coll B, Morel J M. Nonlocal Image and Movie Denoising[J]. International Journal of Computer Vision, 2008, 76(2): 123-139.
  • 6Benesty J,Makino S,Chen J.Speech enhancement[M].Berlin,Germany:Springer,2005.
  • 7Hao J C,Attias H,Nagarajan S,Lee T W,Sejnowski T J.Speech enhancement,gain,and noise spectrum adaptation using approximate bayesian estimation[J].IEEE Transactions on Audio,Speech,and Language Processing,2009,17(1):24-37.
  • 8Yoshioka T,Nakatani T,Okuno H G.Noisy speech enhancement based on prior knowledge about spectral envelope and harmonic structure[A].2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP)[C],2010:4270-4273.
  • 9Tantibundhit C,Pernkopf F,Kubin G.Joint time-frequency segmentation algorithm for transient speech decomposition and speech enhancement[J].IEEE Transactions on Audio,Speech,and Language Processing,2010,18(6):1417-1428.
  • 10Mallat S,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41:3397-3415.

共引文献49

同被引文献78

  • 1YU Nan-nan,QIU Tian-shuang,LIU Wen-hong.Medical Image Fusion Based on Sparse Representation with KSVD[J].Chinese Journal of Biomedical Engineering(English Edition),2019,28(4):168-172. 被引量:1
  • 2付燕.基于二次小波变换的地震信号去噪方法[J].石油地球物理勘探,2005,40(2):154-157. 被引量:17
  • 3DELEALLE C A, DENIS L, TUPIN F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2661-2672.
  • 4SANKARAN K S, BHUVANESHWARI S, NARAJAN V. A new edge preserved technique using iterative median filter[C]//ICCSP 2014: Proceedings of the 2014 International Conference on Communications and Signal Processing. Piscataway, NJ: IEEE, 2014:1750-1754.
  • 5REMENYI N, NICOLIS O, NASON G, et al. Image denoising with 2D scale mixing complex wavelet transforms[J]. IEEE Transactions on Image Processing, 2014, 10(11): 5165-5174.
  • 6SANKARAN K S, AMMU G, NARAJAN V. Patch based image restoration using adaptive bilateral filtering[C]//ICICES 2014: Proceedings of the 2014 International Conference on Information Communication and Embedded Systems. Piscataway, NJ: IEEE, 2014: 1-5.
  • 7BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//CSCCVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2005: 60-65.
  • 8CHAUDHURY K N, SINGER A. Non-local Euclidean medians[J]. IEEE Signal Processing Letters, 2012, 19(11): 745-748.
  • 9DABOV K, FOI A, KATKOVNIK V. Image denoising by sparse 3-D transform-domain collaborative itering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
  • 10SHNAYDERMAN A, GUSEV A, ESKICIOGLU A. A multidimensional image quality measure using singular value decomposition[C]//Proceedings of the 2004 Image Quality and System Performance Conference. Bellingham, WA: SPIE, 2004: 82-92.

引证文献10

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部