期刊文献+

基于L2范数和增量正交投影非负矩阵分解的目标跟踪算法 被引量:4

Object tracking algorithm via L2 norm and incremental orthogonal projective non-negative matrix factorization
下载PDF
导出
摘要 在贝叶斯框架下,基于增量正交投影非负矩阵分解目标跟踪算法能够适应各种复杂的场景,准确处理跟踪目标外观变化,取得了较好的跟踪效果,但是该算法计算量大,难以满足实时性要求。针对这一缺点,提出了一种基于L2范数和增量正交投影非负矩阵分解的目标跟踪算法,建立基于L2范数最小化和增量正交投影非负矩阵分解的目标表示模型,在贝叶斯框架下得出跟踪结果。实验结果表明,新算法能够较好地处理视频场景中的光照变化、尺度变化、局部遮挡、角度变化等干扰,有较低的中心位置误差平均值和较高的重叠率平均值,平均处理视频达4.08帧·s-1,能够满足实时性的要求。 Under the framework of the Bayesian estimation, the tracking algorithm based on incremental orthogonal changes obI projective non-negative matrix factorization can deal with complex scenes and the appearance ,ject in the video scene and can get better results. However, the computation cost is too large to meet real-time tracking. To solve the problem, object tracking algorithm combining the L2 norm and in- cremental orthogonal projective non-negative matrix factorization is proposed under the framework of the Bayesian estimation. Experimental results show that the proposed method can deal with illumination chan- ges, scale changes , handling occlusion and angle changes with lower average center location and higher av- erage overlap rates. Additionally, the proposed method can work well at a speed about 4. 08 frame · s-1 and can achieve real-time tracking.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第2期262-269,共8页 Journal of Natural Science of Heilongjiang University
基金 山东省自然科学基金高校 科研单位联合专项计划资助项目(ZR2014FL020) 滨州市科技发展计划项目(2013ZC0103)
关键词 L2范数 增量正交投影非负矩阵分解 目标跟踪 贝叶斯估计 实时 L2 norm IOPNMF object tracking Bayesian estimation real time
  • 相关文献

参考文献13

  • 1ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking [ J ]. International Journal of Computer Vision, 2008, 77 ( 3 ) : 125 -141.
  • 2XUE M, LING H B. Robust visual tracking using L1 minimization[ C ]. International Conference on Computer Vision. Kyoto: IEEE, 2009 : 1436 - 1443.
  • 3LEE D, SEUNG H. Learning the parts of objects by non-negative matrix factorization[ J]. Nature, 1999, 401 : 788 -791.
  • 4BUCAK S S, GUNSEL B. Incremental subspace learning via non-negative matrix factorization [ J ]. Pattern Recognition, 2009, 42 (5) : 788 - 797.
  • 5YANG Z R, YUAN Z J, LAAKSONEN J. Projective non-negative matrix factofization with applications to facial image processing[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21 (8) : 1353 -1362.
  • 6WANG D, LU H C. On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization[ J ]. Signal Processing, 2013, 93 : 1608 - 1623.
  • 7WANG D, LU H C. Incremental orthogonal projective non-negative matrix factorization and its applications[ C ]. International Conference on Image Processing. Brussels: IEEE, 2011 : 2117 -2120.
  • 8YANG Z R, OJA E. Linear and nonlinear projective nonnegative matrix factorization[ J]. IEEE Transactions on Neural Networks, 2010, 21 (5) : 734 - 749.
  • 9XIAO Z Y, LU H C, WANG D. L2-RLS based object tracking[ J], IEEE Transactions on Circuits and Systems for Video Technology, 2013, 99 : 1-9.
  • 10KALAL J, MATAS J, MIKOLAJCZYK K. P-N learning: bootstrapping binary classifiers by structural constraints [ C ]. Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010 : 49 - 56.

同被引文献18

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部