期刊文献+

利用多尺度弦角尖锐度累积的自适应角点检测算子 被引量:3

An Adaptive Threshold Corner Detector Based on Multi-scale Chord-Angle Sharpness Accumulation
原文传递
导出
摘要 为提高角点检测算法的定位精度和对噪声的鲁棒性,提出了基于多尺度弦角尖锐度累积的自适应角点检测算子。首先,利用Canny算法快速提取图像边缘轮廓;然后,划分轮廓支撑域并将其作为尺度,分别计算3个尺度下的弦角尖锐度均值,并将其累积作为角点响应函数;最后,根据每条轮廓各自的自适应阈值标记角点。实验结果表明,与现有的角点检测算法相比,该算法提高了噪声图像和模糊图像上角点的定位精度和抗噪声能力,并具有自适应性。 We propose a new adaptive corner detector based on multi-scale chord-angle sharpness accu-mulation, which can reduce location error and detects fine accuracy on noisy images. Firstly, we use the canny detector to detect edges at low computational cost. Secondly, we devise support regions of the contour into three sections as scales and computes the chord-angel sharpness respectively, then ac- cumulate the three scale sharpness as corner response function. Finally, we use an dynamic adaptive corner threshold to label corners. The results on fine and low quality images show that the proposed algorithm performs better than the other three algorithms in terms of both detection accuracy and lo- cation error.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第5期617-622,627,共7页 Geomatics and Information Science of Wuhan University
基金 湖北省自然科学基金资助项目(2015CFB602) 冶金工业过程系统科学湖北省重点实验室资助项目(Y201413) 国家973计划资助项目(2011CB707904)~~
关键词 角点检测 噪声图像 弦角尖锐度累积 自适应阈值 corner detector noisy image chord-angel sharpness accumulation adaptive threshold
  • 相关文献

参考文献13

  • 1陈敏,邵振峰.一种稳健的高效角点特征提取变换[J].武汉大学学报(信息科学版),2013,38(10):1142-1147. 被引量:2
  • 2Sinzinger E D. A Model-Based Approach to Junc- tion Detection Using Radial Energy [J]. Pattern Recognit, 2008, 41(2) :494-505.
  • 3Harris C, Stephens M. A Combined Corner and Edge Detector[C]. The 4th Alvey Vision Confer- ence, Manchester, 1988.
  • 4Rosten E, Drummond T. Machine Learning for High-Speed Corner Detection[J]. Computer Vision- ECCV, 2006, 3 951:430-443.
  • 5孙小丹,徐涵秋.一种利用多光谱双向检测和多尺度角特征验证的角提取方法[J].武汉大学学报(信息科学版),2009,34(10):1231-1235. 被引量:1
  • 6Kahaki S M M, Nordin M J, Ashtari A H. Contour -Based Corner Detection and Classification by Using Mean Projection Transform[J]. Sensors (Switzer- land), 2014, 14(3): 4 126-4 143.
  • 7Awrangjeb M, Lu G. An Affine Resilient Curva- ture Scale-Space Corner Detector[C]. IEEE Inter- national Conference on Acoustics, Speech, and Sig- nal Processing, Honolulu, Hawaii, USA, 2007.
  • 8He X C, Yung N H C. Corner Detector Based on Global and Local Curvature Properties[J]. Optical Engineering, 2008, 47 (5) : 47-51.
  • 9Shui P L, Zhang W C. Corner Detection and Classi- fication Using Anisotropic Directional Derivative Representations[J]. IEEE Transactions on Image Processing, 2013, 22(8): 3 204-3 218.
  • 10Zhang X, Lei M, Yang D, et al. Multi-scale Curva- ture Product for Robust Image Corner Detection in Curvature Scale Space[J]. Pattern Recognit Lett , 2007, 28(1): 545-554.

二级参考文献28

  • 1程曦冉,张剑清,张祖勋.航空影像多直角平顶房屋的半自动提取[J].武汉大学学报(信息科学版),2004,29(12):1097-1100. 被引量:13
  • 2何凯,安如,周绍光,金夏玲.一种快速角点探测算子研究[J].测绘学报,2005,34(3):223-227. 被引量:7
  • 3Mehrotra R, Nichani S, Ranganathan N. Corner Detection[J]. Pattern Recognition, 1990, 23 (11): 1223-1233.
  • 4Kitchen L, Rosenfeld A. Gray-level Corner Detection[J]. Pattern Recognition Letters, 1982, 1 (2): 95-102.
  • 5Ray B K, Ray K S. Scale-Space Analysis and Corner Detection on Digital Curves Using A Discrete Scale Space Kernel[J]. Pattern Recognition, 1997, 30(9): 1 463-1 474.
  • 6Chen C H, Lee J S, Sun Y N. Wavelet Transformation For Gray-Level Corner Detection[J]. Pattern Recognition, 1995, 28 (6): 853-861.
  • 7Mokhtarian F, Suomela R. Robust Image Corner Detection through Curvature Scale Space[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12):1 376-1 381.
  • 8Moravec H P. Towards Automatic Obstacle Avoidance (short version) [C]. Proceedings of the 5th International Joint Conference on Artificial Intelligence, MIT, Cambridge, Mass., August 1977: 584.
  • 9Harris C G, Stephens M. A Combined Corner and Edge Detector[C]. Proceedings of Fourth Alley Vision Conference, Manchester, 1988:182-192.
  • 10Shi J, Tomasi C. Good Features to Track [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1994: 593- 600.

共引文献1

同被引文献30

  • 1陈乐,吕文阁,丁少华.角点检测技术研究进展[J].自动化技术与应用,2005,24(5):1-4. 被引量:45
  • 2侯北平,李平,宋执环.纸浆纤维的形状特征提取应用研究[J].浙江大学学报(工学版),2006,40(7):1132-1136. 被引量:1
  • 3王玉珠,杨丹,张小洪.基于B样条的改进型Harris角点检测算法[J].计算机应用研究,2007,24(2):192-193. 被引量:22
  • 4SMITH S M, BRADY J M. SUSAN-A new approach to low level image processing [J]. International Jour- nal of Computer Vision, 1997, 23(1) : 45-78.
  • 5ROSTEN E, POTER R, DRUMMOND T. Faster and better: a machine learning approach to corner detection [J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2010, 32(1): 105-119.
  • 6LAN J, ZHANG M. Fast and robust corner detector based on double-circle mask [J]. Optical Engineering, 2010, 49(12): 1-8.
  • 7HE X C, YUNG N H C. Corner detector based on global and local curvature properties[J]. Optical En- gineering, 2008, 47(5): 1-12.
  • 8AWRANGJEB M, LUG J. Robust image corner de- tection based on the chord-to-point distance accumula- tion technique [J]. IEEE Transactions on Multimedia, 2008, 10(6): 1059-1072.
  • 9TENG S W, SADAT R M, LUG J. Effective and ef- ficient contour-based corner detectors [J]. Pattern Recognition. 2015. 48(7): 2185-2197.
  • 10SHUI P L, ZHANG W C. Corner detection and clas- sification using anisotropic directional derivative repre- sentations [J]. IEEE Transactions on Image Process- ing, 2013, 22(8): 3204-3218.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部