期刊文献+

基于二元网络异步重启随机游走算法预测肺癌风险致病基因 被引量:5

Predicting Lung Cancer Risk Disease Genes Based on Asynchronously Random Walk with Restart in Heterogeneous Networks
原文传递
导出
摘要 肺癌致病基因的发现及预测有助于认识肺癌的发生机理、诊断与防治,是人类基因组研究的重要目标。应用现有二元网络重启随机游走算法预测致病基因时,一般先在疾病表型网络、蛋白质作用网络及疾病-蛋白质二分图网络内随机游走一步,然后进行网络间跳转,这种策略不仅搜索效率较低,还可能遗漏蛋白质(或疾病)网络中的局部拓扑信息。鉴于此,作者提出一种二元网络异步重启游走(asynchronously random walk with restart,ARWRH)算法,构建疾病表型-蛋白质异构网络,深层次挖掘潜在肺癌风险致病基因。ARWRH算法首先在疾病表型网络、蛋白质作用网络及疾病表型-蛋白质二分图网络内随机游走不同步数,然后进行网络间跳转,迭代形成稳态概率向量,从而获得候选致病基因。仿真实验表明,ARWRH算法可有效预测肺癌潜在风险致病基因,多数预测结果获得了文献证据支持。 Predicting lung cancer genes can broaden the understanding of the cellular mechanisms that drive lung cancer, and guide for lung cancer diagnosis, prognosis and therapeutic intervention. It is also an important object of Human Genome Project. Generally, existing algorithms of random walk with restart for predicting the disease genes take the strategy of walking one step in the disease phenotype network, the PPI network and the disease phenotype-protein bipartite network, then jump across heterogeneous networks. This strategy will lead to lower search efficiency and higher probability of missing the local topology information hidden in protein interaction (or disease) networks. An improved algorithm of asynchronously random walk with restart in the heterogeneous networks, called as ARWRH, was proposed to mine lung cancer risk disease genes from disease phenotype-protein heterogeneous networks. ARWRH algorithm walks different steps in the disease phenotype network, the PPI network and the disease phenotype-protein bipartite network, then jumps across heterogeneous networks, in the end, forms a steady vector by this iteration to predict disease genes. The results show that ARWAH algorithm can effectively predict the potential risk lung cancer disease genes. Some evidences in the literatures support that most of the predicted genes are related with lung cancer.
出处 《生物物理学报》 CAS CSCD 北大核心 2015年第1期33-44,共12页 Acta Biophysica Sinica
基金 国家自然科学基金项目(91430111 61473232 61170134) 西北工业大学研究生创业种子基金课题(Z2014145 Z2014152)~~
关键词 肺癌致病基因 重启随机游走 蛋白质作用网络 疾病表型网络 二元网络 Disease gene of lung cancer Random walk with restart Protein-protein interaction network Disease phenotype network Heterogeneous network
  • 相关文献

参考文献36

  • 1Wood LD, Parsons DW, Jones S, Lin J, Sj6blom T, Leary R J, Shen D, Boca SM, Barber T, Ptak J. The genomic landscapes of human breast and colorectal cancers. Science, 2007, 318(5853): 1108-1113.
  • 2Lim J, Hao T, Shaw C, Patel A J, Szab6 G, Rual JF, Fisk C J, Li N, Smolyar A, Hill DE, A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 2006, 125(4): 801-814.
  • 3Van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA. A text-mining analysis of the human phenome. Eur J Hum Genet, 2006, 14(5): 535-542.
  • 4K6hler S, Bauer S, Hom D, Robinson PN. Walking the interactome for pdoritization of candidate disease genes. Am J Hum Genet, 2008, 82(4): 949-958.
  • 5Lage K, Karlberg EO, Sterling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, T[- mer Z, Pociot F, Tommerup N. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol, 2007, 25(3): 309-316.
  • 6Wu X, Liu Q, Jiang R. Align human interactome with phenome to identify causative genes and networks underlying disease families. Bioinformatics, 2009, 25(1): 98-104.
  • 7Li Y, Patra JC. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics, 2010, 26(9): 1219-1224.
  • 8Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi T, Gronborg M. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res, 2003, 13(10): 2363-2371.
  • 9Hamosh A, Scott AF, Amberger JS, Bocchini CA, Mckusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res, 2005, 33(Suppl 1): D514-D517.
  • 10Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol, 2008, 4(1): 189.

同被引文献39

  • 1王盼盼,田德桥.美国国立卫生研究院冠状病毒相关科研项目分析[J].军事医学,2020(5):354-361. 被引量:3
  • 2DttPage M, Jacks T. Genetically engineered mouse models of cancer reveal new insights about the antitumor immune response. Current Opinion in Immunology, 2013, 25(2): 192-199.
  • 3Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA: a cancer journal for clinicians, 2014, 64(1): 9-29.
  • 4e Zahra S N, Khattak N A, Mir A. Comparative modeling and docking studies of pl6ink4/Cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1. Theoretical Biology and Medical Modelling, 2013,10(1): 1.
  • 5Ktihler S, Bauer S, Horn D, et al. Walking the interactome for pdoritization of candidate disease genes. The American Journal of Human Genetics, 2008, 82(4): 949-958.
  • 6Vanunu O, Magger O, Ruppin E, et ol. Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol, 6(1): e1000641(DOI: 10.1371/joumal.pcbi.1000641).
  • 7Le D H, Kwon Y K. Neighbor-favoring weight reinforcement to improve random walk-based disease gene prioritization. Computational Biology and Chemistry, 2013, 44(01): 1-8.
  • 8Guo X, Gao L, Wei C, eta/. A computational method based on the integration of heterogeneous networks for predicting disease-gene associations. PIoS one, 2011, 6(9): e34171.
  • 9Xie M, Hwang T, Kuang R. Reconstructing disease phenome- genome association by bi-random walk. Bioinformatics, 2012, 1(02): 1-8.
  • 10Navlakha S, Kingsford C. The power of protein interaction networks for associating genes with diseases. Bioinformatics, 2010, 26(8): 1057-1063.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部