期刊文献+

基于模糊聚类的黄瓜病害图像自动分割 被引量:3

Automatic segmentation of cucumber diseases image based on fuzzy clustering
下载PDF
导出
摘要 提出了一种基于模糊聚类的黄瓜病害图像自动分割方法,模糊聚类与差分进化算法相结合,在进化过程中根据聚类中心对应的阈值确定模糊聚类中心的个数,由差分进化适应度函数值确定聚类中心是否被选中,以此实现图像的模糊聚类自动分割。经黄瓜炭疽病叶图像、白粉病叶图像、灰霉病叶图像和霜霉病叶图像的实验测试,该方法可以实现无人干预情况下的黄瓜病害图像自动分割,与相同类别个数的FCM算法相比,表现出了更好的性能。 With the combination of fuzzy clustering and differential evolution algorithm, the number of cluster centers was determined according to threshold which responded to cluster center during evolution. The clustering centers were determined whether selected or not by the fitness function values of differential evolution, which realized the automatic segmentation based on fuzzy clustering. After experimental testing with cucumber anthrac- nose leaf image, powdery mildew leaf image, botrytis leaf image and downy mildew leaf image, it was proved that our approach can segment cucumber diseases images automatically without human intervention. Compared with results from FCM with the same amounts of clustering classes, our results show better performance.
作者 郭鹏 李乃祥
出处 《中国农机化学报》 2015年第3期123-126,131,共5页 Journal of Chinese Agricultural Mechanization
基金 天津市高等学校科技发展基金计划项目(20120811) 国家星火科技计划项目(2011GA610012)
关键词 自动图像分割 黄瓜病害 模糊聚类 差分进化 automatic image segmentation cucumber disease fuzzy clustering differential evolution
  • 相关文献

参考文献7

  • 1N.R. Pal, S.K. Pal. A review on image segmentation techniques [J]. Pattern recognition, 1993, 26(9): 1277-1294.
  • 2S. Das, A. Abraham, et al. Automatic clustering using an im- proved differential evolution algorithm f-J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2008, 38(1): 218-237.
  • 3Storn R, Price K. Differential evolution-a simple and efficient heu- ristic for global optimization over continuous spaces [j]. Journal of Global ()ptimization, 1997, (11): 341-359.
  • 4陈荣元,林立宇,王四春,秦前清.数据同化框架下基于差分进化的遥感图像融合[J].自动化学报,2010,36(3):392-398. 被引量:10
  • 5Rami N. Khushaba, Ahmed AI-Ani, et al. Differential evolution based feature subset selection[C]. 19th international Conference on Pattern Recognition, Tampa, FL. 2008. IEEE, 2008.
  • 6W. Sheng, S. Swift, et al. A weighted sum validity function for clustering with a hybrid niching genetic algorithm [J ]. IEEE Trans. Syst. Man Cybern-part B: cybernetics, 2005, 35(6): 1156 -1167.
  • 7Nun Lung Wu, Miin-Shen Yang. A cluster validity index for fuzzy clustering I-J]. Pattern Recognition Letters, 2005, 26.. 1275 -1291.

二级参考文献16

  • 1黄春林,李新.陆面数据同化系统的研究综述[J].遥感技术与应用,2004,19(5):424-430. 被引量:45
  • 2刘贵喜,陈文锦,杨万海.融合参数对对比度塔形分解图像融合方法性能的影响研究[J].电路与系统学报,2006,11(1):39-45. 被引量:6
  • 3陈蜜,伭剑辉,李德仁,秦前清,贾永红.独立分量分析的图像融合算法[J].光电工程,2007,34(6):82-87. 被引量:9
  • 4刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 5Gonzalez-Audicana M, Salcta J L, Catalan R G, Garcia R. Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1291-1299.
  • 6Wu J, Liu J, Tian J W, Yin B K. Wavelet-based remote sensing image fusion with PCA and feature product. In: Proceedings of the 2006 International Conference on Mechatronics and Automation. Luoyang, China: IEEE, 2006. 2053-2057.
  • 7Tang L, Zhao Z G. Multiresolution image fusion based on the wavelet-based contourlet transform. In: Proceedings of the 10th International Conference on Information Fusion. Quebec, Canada: IEEE, 2007. 184-189.
  • 8Bach H, Mauser W. Methods and examples for remote sensing data assimilation in land surface process modeling. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1629-1637.
  • 9Li X, Toshio K, Mahadevan P. A very fast simulated reannealing approach for land data assimilation. Computers and Geosciences, 2004, 30(3): 239-248.
  • 10Mitianoudis N, Stathaki T. Optimal contrast for color image fusion using ICA bases. In: Proceedings of the 11th International Conference on Information Fusion. Cologne, Germany: IEEE, 2008. 1-7.

共引文献9

同被引文献22

引证文献3

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部