期刊文献+

光敏化铱配合物三线态材料 被引量:1

Iridium Complexes for Triplet Photosensitizer
原文传递
导出
摘要 铱配合物由于高的激发单线态到三线态的量子转化效率和可调节的三线态寿命,近年来在三线态光敏化应用领域备受瞩目。科学家们就调控铱配合物发光波长和发光量子效率已建立起有效的分子设计策略和原则,但对如何调控铱配合物的可见光吸光响应,三线态量子产率和寿命等光敏化应用要求的重要光物理参数的相关探索并不多,相应的分子设计策略和原则远未建立。本文介绍了铱配合物与光敏化过程相关的光物理特征,改进铱配合物可见光吸收性能、调控三线态量子产率和寿命的分子设计策略,综述了铱配合物近年来应用于染料敏化太阳能电池、三线态-三线态湮灭能量上转化和光裂解水制氢的研究进展,梳理了铱配合物分子结构与光敏化性能之间的部分关联关系。 More concerns to iridium complexes are recently put on light-harvesting applications due to its fast spin-orbital coupling and long triplet lifetimes. The strategies and rules on how to tune the emission energy and improve emission efficiency of the iridium complexes are well established after active investigations in the past two decades. However, the knowledge on how to extend the absorption response of the iridium complexes toward lower energy of the visible region, and improve quantum yields and lifetimes of the excited triplet state by rational molecular design are still deficiency for scientists. Meanwhile, these parameters are crucial important for iridium complexes to be efficient photosensitizer. In this review, the general photophysical process of the iridium complex, the developed strategies/rules for tuning the absorption properties, triplet lifetimes and quantum yield of the iridium complexes are discussed. The relationships between the molecular structure of the iridium complexes and their photophyscial characteristics related to photosensitization behavior are elucidated. Also the recent development of the dye-sensitized solar cells, triplet-triplet annihilation energy upconversion, and photoinduced hydrogen production using iridium complexes as photosensitizer are reviewed.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2015年第5期492-502,共11页 Progress in Chemistry
基金 中央高校基本科研业务费和陕西省博士后基金资助~~
关键词 铱配合物 三线态 光吸收特性 太阳能电池 能量上转化 光裂解水制氢 iridium complexes triplet state light-harvesting property solar cell energy upconversion photoinduced hydrogen production
  • 相关文献

参考文献40

  • 1Baranoff E, Yum J H, Graetzel M, Nazeeruddin M K. J. Organomet. Chem., 2009, 694: 2661.
  • 2You Y, Nam W. Chem. Soc. Rev. , 2012, 41: 7061.
  • 3Zhao JZ, Wu WH, SunJF, GuoS. Chem. Soc. Rev. ,2013 42 : 5323.
  • 4Yan Q F, Fan Y P, Zhao D H. Macromolecules, 2012, 45 133.
  • 5Schwartz K R, Chitta R, Bohnsack J N, Ceckanowicz D J, Miro P, Cramer C J, Mann K R. Inorg. Chem. , 2012, 51 : 5082.
  • 6Sun J F, Wu W H, Zhao J Z. Chem. Eur. J., 2012, 18: 8100.
  • 7Sun J F, Zhong F F, Yi X Y, Zhao J Z. Inorg. Chem. , 2013,52 : 6299.
  • 8Sun J F, Zhong F F, Zhao J Z. Dalton Trans., 2013, 42: 9595.
  • 9YiX Y, Zhang C S, Guo S, Ma J, Zhao J Z. Dalton Trans. 2014, 43: 1672.
  • 10Sun J F, Wu W H, Guo H M, Zhao J Z. Ear. J. Inorg. Chem., 2011: 3165.

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部