摘要
利用完全在线耦合气溶胶-云-化学WRF-Chem数值模式,采用Lin双参数云微物理方案,对珠江三角洲地区2010年5月14日的一次大暴雨过程进行了模拟。在无污染物排放源(控制试验)和有污染物排放源(敏感试验)背景下对云微物理结构和转换过程进行对比分析。结果表明:在降水中心位置和范围上,敏感试验和控制试验均与实况降水相近。但加入污染物排放源后,总累积降水量减少,而平均降水率峰值有所提高,并且降水初始时刻会比无污染物排放源时滞后一些。云水蒸发和雨水蒸发在降水初始阶段的减少,延缓了降水的发生;云水自动转化成雨水的增加致使雨水混合比在降水加强时段增加,造成平均降水率峰值提高;以雨水被霰收集为主的冷云过程的减少导致总累积降水量减少。
The WRF-Chem is a fully coupled "online" numerical model in terms of aerosol-cloud chemistry. We adopted the model to simulate a heavy rainfall in the Pearl River Delta on 14 May 2010 with the Lin double-moment bulk microphysical scheme. Two sensitive tests with (sensitivity) and without (control) pollutant emissions were conducted to understand cloud microphysical processes. Our results show that the sensitivity and control tests were closer to reality in terms of the precipitation center and area, whereas total accumulated precipitation decreased with pollutant emissions. The peak of area-mean rainfall increased with the delay of precipitation. Detailed analysis shows the evaporation of rain and cloud water decreased during the initiation stage, and subsequently delayed the onset of precipitation. Increased auto-conversion of cloud water increased rainwater during the development stage of precipitation, and then increased the peak of area-mean rainfall and part of precipitation. A decrease in accretion of graupel reduced total accumulated precipitation.
出处
《热带气象学报》
CSCD
北大核心
2015年第2期264-272,共9页
Journal of Tropical Meteorology
基金
国家重大科学研究计划项目(2010CB428504
2014CB953904)
国家自然科学基金(41275145)
城市气象科学研究基金(IUMKY&UMRF201104)
高等学校博士学科点专项科研基金(20130171110027)共同资助
关键词
大暴雨
气溶胶
云微物理
数值模拟
heavy rainfall
aerosol
cloud microphysical
numerical simulation