期刊文献+

基于概率特征的步态识别研究

Research of Gait Recognition Based on Probabilistic Features
下载PDF
导出
摘要 针对一些步态识别算法的局限性,提出了一种基于概率特征的步态识别算法.该算法利用目标轮廓在某位置出现的概率作为特征,来表征行人的行走习惯和姿态.概率特征分为运动概率特征和静态概率特征,分别表征行人的手臂、腿部等的运动特征以及躯干、体型等的静态特征.以概率为特征可以减小噪声对识别的影响,甚至可以弱化行人在行走过程中,因偶尔的较大手臂摆幅或者较大步伐等异常动作给识别带来的消极影响.该算法在CASIA Gait Database B和SOTON数据库上分别进行了实验并与其他算法做了对比,实验结果表明,算法对室外和室内样本都有很好的识别效果. Aiming at the limitation of current gait recognition algorithms,a simple and effective gait features representation method was proposed.The method uses probability that target contour appears in a position as features,to characterize the pedestrians’gait habits and postures.These features are divided into motion probability features and static probability features.Motion probability features represent movement characteristics of the pedestrian’s arms,legs,etc;and static probability features represent static character-istics of the pedestrian’s torso,physique,etc.Based on the probability features,the method can reduce the recognition influence by noise,and even weaken the passive influence that are brought by pedestrians’ abnormal action,for example,large arm swing or greater pace occasionally.This method is evaluated exper-imentally using CASIA Gait Database B and SOTON data set.We compared our method with other resear-ches on these data set.The experimental results demonstrate that this method achieves highly competitive performance with outdoor and indoor dataset.
作者 黎利辉 廖萍
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2015年第2期179-183,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 广西教育厅资助项目(200911LX170)
关键词 生物识别 步态识别 概率特征 biometrics gait recognition probabilistic feature
  • 相关文献

参考文献12

  • 1贲晛烨,徐森,王科俊.基于Trace变换的步态识别算法[J].吉林大学学报(工学版),2012,42(1):156-160. 被引量:9
  • 2Johnson A,Bobick A.A multi-view method for gait recognition using static body parameters[C]//Proceedings of the Third International Conference in Audio and Video-based Biometric Person Authentication.Sweden:Springer Berlin Heidelberg,2001:301-311.
  • 3Lee L,Grimson W E L.Gait analysis for recognition and classification[C]//Preceedings of the IEEE International Conference in Automatic Face and Gesture Recognition.Washington,DC,2002:148-155.
  • 4Sundaresan A,Roy-Chowdhury A,Chellappa R.A hidden markov model based framework for recognition of humans from gait sequences[C]//Intl Conf on Image Processing,2003:93-96.
  • 5Liu Zong-yi,Sudeep Sarkar.Simplest representation yet for gait recognition:averaged silhouette[C]//IEEE,Pattern Recognition,ICPR 2004,Proceedings of the 17th International Conference,2004:211-214.
  • 6杨旗,薛定宇.动静态信息融合及动态贝叶斯网络的步态识别[J].中国图象图形学报,2012,17(7):783-790. 被引量:6
  • 7Olivier Barnich,Marc Van Droogenbroeck.ViBe:A universal background subtraction algorithm for video sequences[J].IEEE Transactions on Image Processing,2011,20(6):1709-1724.
  • 8张里博,李华雄,周献中,黄兵.人脸识别中的多粒度代价敏感三支决策[J].山东大学学报(理学版),2014,49(8):48-57. 被引量:16
  • 9Shutler J,Nixon M,Harris C.Statistical gait recognition via temporal moments[C]//Proc IEEE Southwest Symposium on Image Analysis and Interpretation,2000:291-295.
  • 10Foster J,Nixon M,Prugel-Bennett A.New area based metrics for gait recognition[C]//Proc International Conference on Audio-and Video-based Biometric Person Authentication,2001:312-317.

二级参考文献41

  • 1王科俊 贲晛烨.基于线性插值的特征模板构造的步态识别算法框架.南京理工大学学报:自然科学版,2009,:215-219.
  • 2Boulgouris N V, Plataniotis K N, Hatzinakos D. Gait recognition using dynamic time warping[C]///Proc of IEEE Int Symp Multimedia Signal Processing, 2004: 263-266.
  • 3Boulgouris N V, Plataniotis K N, Hatzinakos D. Gait recognition using linear time normalization[J]. Pattern Recognition,2006,39(5) : 969-979.
  • 4Hu M K. Visual pattern recognition by moment invari- ant [ J ] . IEEE Transactions on Information Theory, 1962,8(2) : 179-187.
  • 5Kadyrov A, Petrou M. The Trace transform and its ap plications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(8) : 811-828.
  • 6Yu Shi-qi, Tan Dao-liang, Tan Tie-niu. A framework for evaluating the effect of view angle, clothing and carrying condition on gait reeognition [C]//Proc of the 18th International Conference on Pattern Recognition, Hong Kong, China, 2006:441 444.
  • 7Sarkar S. The Human ID gait challenge problem: data sets, performance and analysis[J]. IEEE Trans on Pat- tern Analysis and Machine Intelligence, 2005, 27 ( 2 ) : 162-177.
  • 8Yu Shi-qi, Tan Dao-liang, Huang Kai-qi, et al. Reduc- ing the effect of noise on human contour in gait recogni- tion[C]//Proc of the 2nd International Conference on Biometrics, Seoul, Korea, 2007: 338-346.
  • 9Yu Shi-qi, Wang Liang, Huang Kai-qi, et al. Gait a- nalysis for human identification in frequency domain[C] //Proc of the 3rd International Conference on Image and Graphics, 2004: 282-285.
  • 10Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med, 1996, 36:893-906.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部