期刊文献+

基于WiFi背景噪音的被动式人体行为识别研究 被引量:2

Research on passive human activity recognition using WiFi ambient signals
下载PDF
导出
摘要 利用WiFi背景噪音,传统K-NN和Bagging算法可有效识别较少人体行为,但对较多状态:无人、走、坐、站、睡、跌倒、跑,实验发现,单纯使用K-NN和Bagging算法分类效果并不理想,故设计了一种新的融合算法.实验结果证实,融合算法相较于K-NN和Bagging算法可以大幅提高识别准确率,将新算法应用于多人混合状态识别也取得较好的识别准确率. Although traditional k-nearest neighbor (K-NN) and Bagging can recognize effectively less human activities using WiFi ambient signal, recognition by either alone of the seven states, namely, empty, walking, sitting, standing, sleeping, falling and running, is not ideal. To improve recognition rates, a new algorithm, fusion algorithm, was designed. It significantly outperforms K-NN and Bagging in terms of recognition ratios in both single-subject and multi-subject exoeriments.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2015年第4期308-313,共6页 JUSTC
基金 安徽省科技攻关项目资助(1206c0805039) 国家高技术研究发展(863)计划(2012AA011103) 国家自然科学基金青年项目(61300034)资助
关键词 WiFi背景噪音 人体行为 融合算法 混合状态 WiFi ambient signals human activities fusion algorithm multi-subject
  • 相关文献

参考文献13

  • 1钱志鸿,王义君.面向物联网的无线传感器网络综述[J].电子与信息学报,2013,35(1):215-227. 被引量:454
  • 2Zhang M, Sawchuk A. Human Daily Activity Recognition with Sparse Representation Using Wearable Sensors [J].Biomedical and Health Informatics, IEEE Journal of 2013,17 (3): 553-560.
  • 3Chen L M, Nugent C D, Wang H. A knowledge- driven approach to activity recognition in smart homes [J]. IEEE Transactions on Knowledge and Data Engineering. 2012, 24(6): 961- 974.
  • 4徐川龙,顾勤龙,姚明海.一种基于三维加速度传感器的人体行为识别方法[J].计算机系统应用,2013,22(6):132-135. 被引量:32
  • 5Orphomma S, Swangmuang N. Exploiting the wireless RF fading for human activity recognition[C]// 10th International Conference on Electrical Engineering/ Electronics, Computer, Telecomunications and Information Technology. Krabi, Thailand: IEEE Press, 2013: 1-5.
  • 6Sigg S, Scholz M, Shi S Y, et al. RF-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals[J]. IEEE Transactions on Mobile Computing, 2014, 13 (4) :907-920.
  • 7HerediaB, Ocaa M, Bergasa L M, et al. People location system based on WiFi signal measure[C]// International Symposium on Intelligent Signal Processing. Alcala de Henares, Spain: IEEE Press, 2007 : 1-6.
  • 8裴文莲,詹林.Android平台上WiFi技术在商场员工定位系统中的应用[J].计算机与现代化,2013(2):159-162. 被引量:12
  • 9Koweerawong C, Wipusitwarakun K, Kaemarungsi K. Indoor localization improvement via adaptive RSS fingerprinting database[C]// International Conference on Information Networking. Bangkok, Thailand: IEEE Press, 2013: 412-416.
  • 10Abdellatif M, Mtibaa A, Harras K A, et al. GreenLoc: An energy efficient architecture for WiFi- based indoor localization on mobile phones [C]// International Conference on Communications. Budapest, Hungary: IEEE Press, 2013: 4425-4430.

二级参考文献95

  • 1刘强,黄小红,冷延鹏,李龙江,毛玉明.Deployment Strategy of Wireless Sensor Networks for Internet of Things[J].China Communications,2011,8(8):111-120. 被引量:29
  • 2任秀丽,于海斌.ZigBee无线通信协议实现技术的研究[J].计算机工程与应用,2007,43(6):143-145. 被引量:119
  • 3Viani F, Rocca P, Oliveri G, et al. Localization, tracking, and imaging of targets in wireless sensor networks: an invited review[J]. Radio Science, 2011, DOI: 10.1029/2010RS004561.
  • 4Emeka E E and Abraham O F. A survey of system architecture requirements for health care-based wireless sensor networks[J]. Sensors, 2011, 11(5): 4875-4898.
  • 5Fernando L, Antonio-Javier G, Felipe G, et al. A comprehensive approach to WSN-based ITS applications: a survey[J]. Sensors, 2011, 11(11): 10220-10265.
  • 6Cristina A, Pedro S, Andr6s I, et al. Wireless sensor networks for oceanographic monitoring: a systematic review[J]. Sensors, 2010, 10(7): 6948-6968.
  • 7Ni Lione M, Yunhao Liu, and Yanmin Zhu. China's national research project on wireless sensor networks[J]. IEEE Wireless Communications, 2007, 14(6): 78 83.
  • 8Ldpez T S, Kim Dae-young, wireless sensors and RFID dynamic context networks[J] 240-267. Canepa G H, et al. Integrating tags into energy-efficient and Computer Journal, 2009, 52(2):.
  • 9Liao Pei-kai, Chang Min-kuan, and Kuo C J. A statistical approach to contour line estimation in wireless sensor networks with practical considerations[J]. IEEE Transactions on Vehicular Technology, 2009, 58(7): 3579 3595.
  • 10Akyildiz I F, Tommaso M, and Kaushik R. Wireless multimedia sensor networks: a survey[J]. IEEE WirelessCommunications, 2007, 14(6): 32-39.

共引文献495

同被引文献2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部