期刊文献+

可控放大率重建物光场中的相位畸变 被引量:1

Phase Distortion in Object Wavefront Reconstructed by Adjustable Magnification Algorithms
原文传递
导出
摘要 可控放大率物光场重建算法可以有效利用数字全息图的空间带宽积,但同时会引入相位畸变。通过研究现有各种可控放大率物光场重建算法,导出了畸变相位的数学表达式。结果表明:无论对菲涅耳全息还是无透镜傅里叶变换全息,如果将"+1"级或"-1"级物光场放大,则重建物光场上都会叠加有一个由球面波产生的二次相位畸变,且"+1"级与"-1"级物光场所叠加的球面波相为共轭复数。如果将该球面波波长折算为记录全息图时的光波长,则球面光波半径相同,完全取决于放大率和物距,与算法无关。 The adjustable magnification object wavefront reconstruction algorithm effectively uses the space bandwidth product of digital holograms, but also introduces phase distortion. Mathematical expressions of the distortion phase correspond to each adjustable magnification algorithm are derived from present studies. The results indicate that a quadratic phase distortion superimpose on the magnified object wavefront, no matter the wavefront is reconstructed from Fresnel or lensless Fourier transform digital holograms. The phase distortions of + 1 and- 1 orders constructed wavefronts are conjugate complexes to each other. The phase distortions is generated by a spherical wave, and the radius of the wave is irrelevant to algorithm selection, but mainly determined by magnification and the object distance.
作者 钱晓凡
出处 《激光与光电子学进展》 CSCD 北大核心 2015年第5期48-57,共10页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61067004)
关键词 全息 物光场重建 可控放大率 相位畸变 holography wavefront reconstruction adjustable magnification phase distortion
  • 相关文献

参考文献13

  • 1Schedin S, Pedrini G, Tiziani H ,l, et al.. Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography[J]. Appl Opt, 1999, 38(34): 7056-7062.
  • 2Zhang F, Yamaguchi I, Yaroslavsky L P. Algorithm for reconstruction of digital holograms with adjustable magnification [J]. Opt Lett, 2004, 29(14): 1668-1670.
  • 3A Domenico, C Giuseppe, D N Sergio, et al.. Method for superposing reconstructed images from digital holograms of the same object recoded at different distance and wavelength[J]. Opt Commun, 2006, 260(1): 113-116.
  • 4Li J, Tankam P, Peng Z, et al.. Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification[J]. Opt Lett, 2009, 34(5): 572-574.
  • 5Picart P, Tankam P, Mounier D, et al.. Spatial bandwidth extended reconstruction for digital color Fresnel holograms [J]. Opt Express, 2009, 17(11): 9145-9156.
  • 6李俊昌,樊则宾.彩色数字全息的非插值波面重建算法研究[J].物理学报,2010,59(4):2457-2461. 被引量:5
  • 7Caojin Yuan, Xiaofan Qian, et al.. An adjustable magnification method of lensless Fourier holography based on the equivalent spatial frequency[J]. Opt Commun, 2013, 287(1): 58-62.
  • 8李俊昌,宋庆和,桂进斌,彭祖杰,楼宇丽.数字全息波前重建中的像平面滤波技术研究[J].光学学报,2011,31(9):297-302. 被引量:10
  • 9T Colomb, E Cuche, F Charri, et al.. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation[J]. Appl Opt, 2006, 45(5): 851-863.
  • 10潘卫清,朱勇建,郎海涛.基于系统标定的相衬显微数字全息方法[J].中国激光,2010,37(7):1812-1820. 被引量:12

二级参考文献77

  • 1潘卫清 朱勇建 鲁伟等.光束扫描超分辨数字全息.光学学报,2008,28(2):299-303.
  • 2Zhao J L, Jiang H H, Di J L 2008 Opt. Express 16 2514.
  • 3Goodman J W 2006 An Introduction to Fourier Optics (3rd Ed. ) (Roberts and Company Publishers. Inc, ).
  • 4David M, Javier G, Carlos F, Luis M B, Francisco M 1999 Opt. Commun. 164 233.
  • 5Zhang F, Yamaguchi I 2004 Opt. Lett. 29 1668.
  • 6Li J C, Patrice T, Peng Z J, Pascal P 2009 Opt. Lett. 34 572.
  • 7Pascal P, Patrice T, Denis M, Peng J C, Li J C 2009 Opt. Express 17 9145.
  • 8P. Marquet, B. Rappaz, J. Magistretti et al.. Digital holographicmicroscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy [J]. Opt. Lett. , 2005, 30 (5) : 468-470.
  • 9D. Carl, B. Kemper, G. Wernieke et al.. Parameter optimized digital holographic microscope for high-resolution living-cell analysis[J]. Appl. Opt. , 2004, 43(36): 6536-6544.
  • 10F. Pietro, G. Simonetta, A. Domenico et al.. Extended focused image in microscopy by digital holography [J]. Opt. Express, 2005, 13(18): 6738-6749.

共引文献39

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部