期刊文献+

太阳能盘管腔式高温集热特性模拟与优化 被引量:5

Performance simulation and optimization of a solar tube-cavity high temperature receiver
下载PDF
导出
摘要 盘管腔式集热器可为太阳能布雷顿循环提供高温空气,也能直接用于工业生产,应用前景广阔。聚焦能流的腔内分布是影响盘管温度梯度和出口空气温度的主要因素,为优化盘管腔式集热器结构,合理分布聚焦能流,对不同结构(高度,腔体直径,管径和盘旋形状)的盘管式空气集热器进行了建模及模拟。模拟过程耦合了光学模型和传热模型,采用蒙特卡洛模型获得腔内能流分布,并将其作为边界条件加载到三维CFD(Computaional Fluid Dynamics,CFD)传热模型中,进而获得集热管内空气的温度场分布,为结构优化提供重要参考。 Tube-cavity receiver can be used to provide hot air for solar-Brayton cycle and industrial production directly,so it has a bright prospect. The distribution of concentrated soalr beam in the cavity is a main factor affecting the temperature gradient of the coiled tube and air outlet temperature. The optimization of the receiver geometry was conducted to make the concentrated light distribute reasonably and different geometries( cavity height,cavity diameter,tube inner diameter and spiral type) were modeled. The optical model and heat transfer model were coupled in the simulation.Light distribution in the cavity was obtained based on the Monte-Carlo method and the result of light distribution was substituted into the three-dimensional CFD model as the boundary condition to calculate the temperature field of the air inside the coiled tube,which can be significant references for the geometry optimization.
出处 《能源工程》 2015年第2期39-44,50,共7页 Energy Engineering
基金 浙江省重大科技专项计划(2012C01022-1)
关键词 太阳能 盘管 集热器 高温空气 能流分布 温度场 solar energy coiled tube receiver hot air light distribution temperature filed
  • 相关文献

参考文献10

  • 1KALOGIROU S A. Solar thermal collectors and appli- cations [J]. Progress in Energy and Combustion Sci- ence,2004,30(3 ) :231 -295.
  • 2HO C K, IVERSON B D. Review of high-temperature central receiver designs for concentrating solar power [ J]. Renewable and Sustainable Energy Reviews, 2014,29:835 - 846.
  • 3OUAGUED M, KHELLAF A, LOUKARFI L. Estima- tion of the temperature, heat gain and heat loss by so- lar parabolic trough collector under Algerian climate u- sing different thermal oils [ J]. Energy Conversion and Management,2013,75 : 191 - 201.
  • 4XIAO Gang, GUO Kai-kai, LUO Zhong-yang, et al. Simulation and experimental study on a spiral solid particle solar receiver [J]. Applied Energy,2014, 113:178 - 188.
  • 5KEARNEY D, KELLY B, HERRMANN U, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field [J]. Energy,2004,29(5 -6) : 861 - 870.
  • 6TIAN Y, ZHAO C Y. A review of solar collectors and thermal energy storage in solar thermal applications [J]. Applied Energy, 2013, 104:538 -553.
  • 7BADER R, BARBATO M,PEDRETTI A, et al. An air-based cavity-receiver for solar trough concentrators [ J]. Journal of Solar Energy Engineering,2010, 132 (3) :10 - 17.
  • 8BEHARO, KHELLAFA,MOHAMMEDIK. Areview of studies on central receiver solar thermal power plants [ J 1- Renewable and Sustainable Energy Re- views,2013,23:12 - 39.
  • 9杨雌铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
  • 10ZAVATTONI S A, GAETANO A, BARBATO M C, et al. CFD Analysis of a Receiving Cavity Suitable for a Novel CSP Parabolic Trough Receiver:Jl. Energy Procedia ,2014,49:579 - 588.

共引文献6

同被引文献26

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部