期刊文献+

量子鱼群算法优化RBF网络的浮选预测模型 被引量:2

Application of RBF-net in flotation prediction model based on quantum artificial fish school algorithm
下载PDF
导出
摘要 传统的浮选过程分析主要依靠人工化验,其采样化验周期较长,难以满足控制要求,使得浮选精矿品位偏低,因此建立浮选精矿品位预测模型是必要的。利用神经网络在非线性复杂系统研究中的优势,在分析浮选过程工艺指标相关影响因素的基础上建立了一种基于量子鱼群算法优化的RBF神经网络预测模型。仿真结果表明,提出的模型能准确地对浮选过程的经济指标进行全局预测,满足优化浮选药剂添加的计算要求。 The traditional analysis procedure in flotation mainly rely on manual test which has a longer sam-pling test cycle and is difficult to satisfy the control requirement,it is leading to low flotation ore grade,there-fore,it is necessary to design a prediction model of flotation ore grade. Using the advantage of nonlinear com-plex system of neural network,a RBF network prediction model based on quantum fish school algorithm is de-signed through analyzing the related factors. The simulation results show that the model can predict globally the economic indexes of flotation process,and satisfy the computational requirements of optimizing adding flotation medicament.
出处 《辽宁科技大学学报》 CAS 2015年第1期46-50,共5页 Journal of University of Science and Technology Liaoning
关键词 量子鱼群算法 RBF网络 浮选过程 quantum fish school algorithm RBF network flotation
  • 相关文献

参考文献7

二级参考文献34

  • 1戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 2李晓磊 钱积新.人工鱼群算法:自下而上的寻优模式[A]..过程系统工程年会论文集[C].,2001.76~82.
  • 3Cilek E C. Application of neural networks to predict locked cycle flotation test results [J]. Minerals Engineering, 2002,15 (12): 1095-1104.
  • 4Munoz C, Cipriano A. An integrated system for supervision and economic optimal control of mineral processing plants [J]. Minerals Engineering, 1999, 12(6):627-643.
  • 5Bearman R A, Milne R W. Expert systems:Opportunities in the minerals industry [J]. Minerals Engineering, 1992,5:1307-1323.
  • 6Zhang Farong,Chen Jin.A study of layout design expert system for mineral concentrator[A]. Proc of the 18th IMPC[C]. 1993. 545-548.
  • 7Ketata C, Rockwell M C. Development of expert systems for stream sampling in mineral processing plants[J]. Artificial Intelligence in Engineering, 2000,14(2):191-197.
  • 8Yianatos J B, Lisboa M A. Grinding capacity enhancement by solid concentration control of hydrocyclone underflow [J]. Minerals Engineering,2002,15 (5):317-323.
  • 9Macvog T J.Contemplative stance for chemical process [J].Automation,1992,28(2):441-442.
  • 10Yoo C K, Lee I B. Soft sensor and adaptive model based dissolved oxygen control for biological wastewater treatment processes [J]. Environmental Engineering Science, 2004, 21 (3): 331-340.

共引文献952

同被引文献30

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部