摘要
两个图G和H的匹配多项式相等,则称它们匹配等价。用δ(G)表示图G的所有不同构的匹配等价图的个数。In(n≥6)表示由路Pn-4的两个端点分别粘接一个P3的2度点后得到的图。计算了一些I形图并图的匹配等价图的个数,即δ(∪i∈AIi),这里A是一些大于等于6的整数组成的可重集。
Two graphs G and H are said to be matching equivalent if they possess the same matching polynomials.δ(G) denotes the number of graphs which are matching equivalent to graph G. This paper lets Pn-2 be a path with vertices sequence x1,x2,,xn?2. In(n≥6) denotes the tree obtained from Pn?2 by adding pendant edges at vertices x2 and xn3 , respectively. It computes the number of graphs of matching equivalent to the union graphs of I shape. Namely, δ(Ui∈A Ii) A is a repeated set of integers of great than or equal 6
出处
《计算机工程与应用》
CSCD
北大核心
2015年第9期68-71,共4页
Computer Engineering and Applications
基金
青海省自然科学基金(No.2011-Z-911)
关键词
I形图
匹配多项式
匹配等价
graphs of I shape
matching polynomial
matching equivalence