期刊文献+

经编机布匹瑕疵的在线视觉检测 被引量:5

Machine vision detection method of fabric defects of warp knitting machine
下载PDF
导出
摘要 为实现经编机织布过程中布匹瑕疵的实时检测,提出了一种基于机器视觉的实时检测方法。离线训练时分别学习有瑕疵和无瑕疵纹理布匹图像,自动求取纹理基元周期和纹理方向,用以构建实用的两方向Gabor滤波器组,进而提取有和无瑕疵图像特征。在线检测时,以离线所构建的Gabor滤波器组分解图像,以离线所求取的参数窗口化Gabor子图,进而提取子图特征并采用特征变化率来代替原始特征的方法以消除光照不均影响。实验表明,该方法可以适应不同纹理布匹检测需求,消除光照影响,布匹检测准确率高达99%,检测一帧(54 pixel×600 pixel)的平均时间为100 ms,实时性和准确性高,可实现经编机布匹瑕疵的在线实时检测。 To achieve real-time detection of fabric defects on warp knitting machine in the process of weaving, a machine vision-based rapid real-time detection method is proposed. In off-time case, it extracts the texture parameters for the estab-lishment of practical Gabor filter banks. In real-time case, it decomposes the images using the Gabor filter banks, partitions the Gabor sub-graph by the extracted texture cycle and extracts the features of every partition, then proposes a discriminant method of defects feature to solve the problem of uneven illumination. Experiments demonstrate that the method can adapt to the detection needs of fabrics with different textures and is insensitive to the effects of light;the accuracy rate is above 99%;the average time of detection is about 100 ms(based on images of 54 pixel × 600 pixel);the method is with high instantaneity and high accuracy and can achieve real-time detection of fabric defects of warp knitting machine.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第9期185-190,共6页 Computer Engineering and Applications
基金 江苏高校优势学科建设工程资助项目(PAPD) 江苏省产学研前瞻性联合研究项目(No.BY2012056)
关键词 经编机 机器视觉 瑕疵检测 GABOR滤波器 warp knitting machine machine vision defects detection Gabor filter
  • 相关文献

参考文献11

  • 1房娜.当前国内外经编产业现状与发展趋势[J].纺织导报,2012(8):22-24. 被引量:7
  • 2Kumar A,Pang G K H.Defect detection in textured materials using optimized filters[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2002,32(5):553-570.
  • 3Sheng Qi,Ke M.Fabric defect detection based on wavelet reconstruction[C]//Multimedia Technology(ICMT),2011:3520-3523.
  • 4Wen Tao,Kezhi M,Hong Z,et al.Selection of Gabor filters for improved texture feature extraction[C]//Image Processing(ICIP),2010:361-364.
  • 5杨晓波.基于自适应离散小波变换的混合特征畸变织物疵点识别[J].纺织学报,2013,34(1):133-137. 被引量:12
  • 6温兆麟,陈新,李克天,郑德涛.统计纹理的自动表面检测[J].计算机应用研究,2007,24(8):193-194. 被引量:3
  • 7朱俊岭,汪军,张孝南,李立轻,陈霞,庞明军.基于AR模型的机织物线状疵点研究[J].纺织学报,2012,33(8):50-54. 被引量:12
  • 8Sun Y,Long H.Detection of weft knitting fabric defects based on windowed texture information and threshold segmentation by CNN[C]//Digital Image Processing,2009:292-296.
  • 9Mak K L,Peng P,Lau H Y K.A real-time computer vision system for detecting defects in textile fabrics[C]//Industrial Technology(ICIT),2005:469-474.
  • 10Kumar A,Pang G K H.Defect detection in textured materials using Gabor filters[J].IEEE Transactions on Industry Applications,2002,38(2):425-440.

二级参考文献39

共引文献42

同被引文献40

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部