期刊文献+

Algorithm for the Removing Uniformed Motion Blur 被引量:1

Algorithm for the Removing Uniformed Motion Blur
下载PDF
导出
摘要 Motion deblurring is one of the basic problems inthe field of image processing. This paper summarizes the mathematical basis of the previous work and presents a deblurringmethod that can improve the estimation of the motion blurkernel and obtain a better result than the traditional methods.Experiments show the motion blur kernel loses some important and useful properties during the estimation of the kernel which may cause a bad estimation and increase the ringingartifacts. Considering that the kernel is provided by the motion of the imaging sensor during the exposure and that the kernel shows the trace of the motion, this paper ensures the physical meaning of the kernel such as the continuity and the center of thekernel during the iterative process. By adding a post process to the estimation of the motion blur kernel, we remove some discrete points and make use of the centralizationof the kernel in order to accurate the estimation. The experiment shows the existence of the post process improves the effect of the estimation of the kernel and provides a better result with the clear edges. Motion deblurring is one of the basic problems inthe field of image processing. This paper summarizes the mathematical basis of the previous work and presents a deblurringmethod that can improve the estimation of the motion blurkernel and obtain a better result than the traditional methods.Experiments show the motion blur kernel loses some important and useful properties during the estimation of the kernel which may cause a bad estimation and increase the ringingartifacts. Considering that the kernel is provided by the motion of the imaging sensor during the exposure and that the kernel shows the trace of the motion, this paper ensures the physical meaning of the kernel such as the continuity and the center of thekernel during the iterative process. By adding a post process to the estimation of the motion blur kernel, we remove some discrete points and make use of the centralizationof the kernel in order to accurate the estimation. The experiment shows the existence of the post process improves the effect of the estimation of the kernel and provides a better result with the clear edges.
出处 《Computer Aided Drafting,Design and Manufacturing》 2014年第4期20-25,共6页 计算机辅助绘图设计与制造(英文版)
基金 Supported by Liao Ning University Innovation Research and Training Program(No.201410141683)
关键词 image deblurring kernel estimation blind deconvolution image deblurring kernel estimation blind deconvolution
  • 相关文献

参考文献10

  • 1YIN Ming,LIU Wei,KONG Ranran.Image denoising using statistical model based on quaternion wavelet domain[J].Computer Aided Drafting,Design and Manufacturing,2012,22(2):8-12. 被引量:4
  • 2Cho S, Matsushita Y, Lee S. Removing non-uniform motion blur from images [C]// Proceedings of ICCV, 2007: 1-8.
  • 3Jia J. Single image motion deblurring using transparency [C]// Proceedings of CVPR, 2007:1- 8.
  • 4Levin A, Weiss Y, Durand F, et al. Understanding and evaluating blind deconvolution algorithms [C]// Proceedings of CVPR, 2009:1-8.
  • 5Cho S, Lee S. Fast motion deblurring [C]// ACM Transactions on Graphics, 2009, 28(5): 145.
  • 6Shan Qi, Jia Jiaya, Aseem A. High-quality motion deblurring from a single image [J]. ACM Transactions on Graphics, 2006, 25(3): 787-794.
  • 7Dai S, Wu Y. Motion from blur [C]// Proceedings of CVPR, 2008: 1-8.
  • 8Lucy L B. An iterative technique tbr the rectification of observed distributions [J]. The Astronomical Journal, 1974, 79: 745.
  • 9Xiong Bangshu, Lia Bei, Yu LeL et al. A noise removal algorithm for DR images based on adaptive estimation of threshold [J]. Computer Aided Drafting, Design and Manu.Iacturing (CADDM), 2012, 22(4):1.
  • 10Joshi N, Szeliski R, Kriegman D. PSF estimation using sharp edge prediction [C]// Proceedings oflEEE Computer Society Col~[L, rence on Computer Vision and Pattern Recognition, 2008:1-8.

二级参考文献16

  • 1易翔,王蔚然.一种概率自适应图像去噪模型[J].电子学报,2005,33(1):63-66. 被引量:10
  • 2Mallat.S, Hwang, W. L. Singularity detection and processing with wavelets [J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643.
  • 3Donoho D L. Denoising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995,41(3): 613-627.
  • 4Crouse M.S, Nowak R.D, Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models [J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.
  • 5M.Kivanc Mihcak, Igor Kozintsev, Kannan Ramchandran. Low-complexity image denoising based on statistical modeling of wavelet coeffcients [J]. IEEE Signal Processing Letters, 1999, 6(12): 300-303.
  • 6S.Chang, B.Yu, Vetterli. M.Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
  • 7Sender, Ivan W. Selesnick.Bivariate Shrinkage Functions for Wavelet-Based Denoising Exploiting Interscale Dependency [J]. IEEE Transactions on Signal Processing, 2002, 20(11): 2744-2756.
  • 8Levent Sendur, Ivan W.Selesnick. Bivariate shrinkage with local variance estimation [J]. IEEE Signal Processing Letters, 2002, 9(12): 438-441.
  • 9E.B.Corrochano. Multi-resolution image analysis using the quaternion wavelet transform [J]. The Journal of Numerical Algorithms, 2005, 39(1): 35-55.
  • 10E.B.Corrochano.The theory and use of quatemion wavelet transform [J]. The Journal of Mathematical Imaging and Vision, 2006, 24(1): 19-35.

共引文献3

同被引文献5

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部