期刊文献+

基于加权置信度的运动捕捉数据低级时域分割算法 被引量:3

Low-level temporal segmentation of motion capture data based on weighted confidence
下载PDF
导出
摘要 针对传统的低级时域分割算法不能很好地应用于运动捕捉数据(具有高维性)的问题,提出了一种基于加权置信度的运动捕捉数据低级时域分割算法.首先计算每个时间点在各维上作为分割点的置信度;之后将这些置信度按照对应的过零强度进行综合,得出加权置信度;最后通过寻找加权置信度的局部最大值点,并根据合适的阈值加以限定,确定出全局的分割点.通过测试多组数据,选择得到最优结果时的阈值.用卡耐基梅隆大学运动捕捉数据库的数据进行了试验.结果表明,该方法可以有效地对动作捕捉数据进行分割;在最优阈值条件下,该方法在各方面指标上均显著优于基于曲率或全身速率的方法. To solve the problem that traditional low-level temporal segmentation methods could hardly work out a suitable segmentation for motion capture data with high dimensionality,a low-level temporal segmentation algorithm was proposed based on weighted confidence. The confidence as segment boundary of each time point was calculated in each dimension,and the confidence values of different dimensions were incorporated by zero-crossing strength. The whole body segment boundaries were derived by pruning the local maximum and determined by an optimum empirical threshold. The optimum threshold was obtained by testing several sets of data. The experiments were completed based on the data from motion capture database of Carnegie Mellon University. The results show that the proposed method is effective for segment motion capture data,and under the optimum threshold condition,the method is far better than the method based on curvature or whole body rate.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第3期312-318,共7页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61402205) 高等学校博士学科点专项科研基金资助项目(20113227110021) 江苏大学高级人才启动经费资助项目(1281170027)
关键词 运动捕捉 低级时域分割 高维时序数据 过零点检测 加权置信度 motion capture low-level temporal segmentation high-dimensional time series zero-crossing detection weighted confidence
  • 相关文献

参考文献14

  • 1Barbi: J, Safonova A, Pan J Y, et al. Segmenting mo- tion capture data into distinct behaviors [ C ] //Procee- dings of Graphics InteoCace 2004. London, Ont, Cana- da: Canadian Information Processing Society, 2004 : 185 - 194.
  • 2Zhou F, De la Torte F, Hodgins J K. Hierarchical a- ligned cluster analysis for temporal clustering of human motion[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (3): 582- 596.
  • 3Gong D, Medioni G, Zhu S K, et al. Kernelized tempo- ral cut for online temporal segmentation and recognition [ C ]//Proceedings of the 12th European Conference on Computer Vision. Heidelberg: Springer Verlag, 2012 : 229 - 243.
  • 4邢薇薇,仝磊鸣,张毅,任程.基于余弦距离的人体运动数据行为分割算法[J].中南大学学报(自然科学版),2014,45(4):1128-1136. 被引量:4
  • 5Ilg W, Bakir G H, Mezger J, et al. On the representa- tion, learning and transfer of spatio-temporal movement characteristics [ J ]. International Journal of Humanoid Robotics, 2004, 1(4): 613-636.
  • 6Fod A, Mataric M J, Jenkins 0 C. Automated derivation of primitives for movement classification [ J ]. Autono- mous Robots, 2002, 12(1) : 39 -54.
  • 7Halit C, Capin T. Muhiscale motion saliency for key- frame extraction from motion capture sequences [ J ]. Computer Animation and Virtual Worlds, 2011, 22( 1 ) : 3 -14.
  • 8刘晓平,陆劲挺,夏新宇.基于PCA和马氏距离的运动捕捉数据分割方法[J].合肥工业大学学报(自然科学版),2014,37(5):563-566. 被引量:4
  • 9Zhao L W, Badler N I. Acquiring and validating motion qualities from live limb gestures [ J 1- Graphical Models, 2005, 67(1) : 1 -16.
  • 10Gibet S, Marteau P F. Approximation of curvature and velocity for gesture segmentation and synthesis [ C ]// Proceedings of the 7th International Gesture Workshop. Heidelberg : Springer :erlag, 2009 : 13 - 23.

二级参考文献44

  • 1王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 2杨涛,肖俊,吴飞,庄越挺.基于分层曲线简化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2006,18(11):1691-1697. 被引量:27
  • 3Geetha P,Narayanan V.A survey of content-based vi-deo retrieval[J].Journal of Computer Science,2008,4(6):474-486.
  • 4Truong B T,Venkatesh S.Video abstraction:a syste-matic review and classification[J].ACM Transactionson Multimedia Computing,Communications and Applica-tions,2007,doi:10.1145/1198302.1198305.
  • 5Ciocca G,Schettini R.An innovative algorithm for keyframe extraction in video summarization[J].Journal ofReal-Time Image Processing,2006,1(1):69-88.
  • 6Zhuang Y T,Rui Y,Huang T S,et al.Adaptive key-frame extraction using unsupervised clustering[C]∥Proceedings of the 1998 IEEE International Conferenceon Image Processing.Los Alamitos:IEEE Comp Soc,1998:866-870.
  • 7Man Hua,Peng Jiang.A feature weighed clusteringbased key-frames extraction method[C]∥Proceedings ofthe 2009 International Forum on Information Technologyand Applications.Piscataway:IEEE Computer Society,2009:69-72.
  • 8Liu Dianting,Shu Meiling,Chen Chao,et al.Integra-tion of global and local information in videos for keyframe extraction[C]∥Proceedings of 2010 IEEE Inter-national Conference on Information Reuse and Integra-tion.Piscataway:IEEE Computer Society,2010:171-176.
  • 9Tian Xiang,Yang Haidong,Deng Feiqi.A novel artifi-cial immune network algorithm[C]∥Proceedings of the2006 International Conference on Machine Learning andCybernetics.Piscataway:IEEE Computer Society,2006:2159-2165.
  • 10Li Xianhui,Zhan Yongzhao,Ke Jia,et al.Shot retrie-val based on fuzzy evolutionary ainet and hybrid features[J].Computers in Human Behavior,2011,27(5):1571-1578.

共引文献13

同被引文献20

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部