期刊文献+

旋转式室温磁制冷回热器二维多孔介质模型仿真 被引量:1

Numerical Simulation on Porous Rotary Active Magnetic Regenerator in Room Temperature
下载PDF
导出
摘要 在考虑了主动式回热器(AMR)中单元小格内磁热性工质粒径的不同和位置分布随机性的情况下,建立了室温磁制冷机关键零部件——AMR的二维多孔介质模型,并对系统进行数值模拟计算优化。与实验结果对比表明,该模型的计算温度曲线与实验结果温度曲线具有相同的发展趋势,个别区域存在一定的计算误差,但其在可以接受的范围内。通过分析冷却流体流量、AMR转速以及磁场强度对室温磁制冷机性能的影响,结果表明:当换热流体流量增加时,有助于抵消AMR中残留液体对于性能的影响;转速的增加减少了换热流体与磁工质的换热时间,对于制冷机的性能存在不利影响,但是这一影响在冷却流体流量较大时会变小;增加磁场强度有助于减轻残留液体对于制冷量的影响,系统性能也有明显的提升。 A novel two-dimensional porous model of active magnetic regenerator (AMR) is established in consideration of the different grain sizes and random distribution of magneto-caloric materials (MCMs) in the cross-section of AMR lattice.The active magnetic regenerator is numerically simulated.The simulated results are compared with the experimental results.The calculated temperature curve is similar to the experimental temperature curve.In some region,a calculation error exists,which is in a acceptable range.The effects of mass flow rate of heat transfer fluid (HTF),AMR's rotary speed and magnetic field intensity on cooling capacity are investigated.The simulation results show that the increase in the HTF's mass flow rate is helpful to neutralize the unfavorable influence of the residual HTF.With the increase in rotary speed,the heat transfer time between HTF and the MCM shortens,which is harmful to the refrigerator performance.However,this harmful influence can be weaken when the mass flow rate increases.The higher intensity of magnetic field is also useful to reduce the effect of the residual HTF on the cooling capacity.
出处 《兵工学报》 EI CAS CSCD 北大核心 2015年第5期938-945,共8页 Acta Armamentarii
基金 国家自然科学基金项目(51176050)
关键词 工程热物理 磁制冷 多孔介质 数值模拟 engineering thermophysics magnetic refrigeration porous media numerical simulation
  • 相关文献

参考文献17

  • 1Tusek J, Kitanovski A, Prebil I, et al. Dynamic operation of an active magnetic regenerator (AMR) : numerical optimization of a packed-bed AMR [ J]. International Journal of Refrigeration, 2011, 2011,34(6) : 1507 - 1517.
  • 2Bouchard J, Nesreddine H, Galanis N. Model of a porous regener- ator used for magnetic refrigeration at room temperature[J]. Inter- national Journal of Heat and Mass Transfer, 2009, 52 (5/6): 1223 - 1229.
  • 3Liu M, Yu B F. Numerical investigations on internal temperature distribution and refrigeration performance of reciprocating active magnetic regenerator of room temperature magnetic refrigeration [ J ]. International Journal of Refrigeration, 2011, 34 ( 3 ) :617 - 627.
  • 4Li J, Numazawa T, Nakagome H, et al. Numerical modeling on a reciprocating active magnetic regenerator refrigeration in room tem- perature[J]. Cryogenics, 2011, 51 (6) :347 -352.
  • 5Sarlah A, Kitanovski A, Poredos A, et al. Static and rotating ac- tive magnetic regenerators with porous heat exchangers for magnetic cooling[ J ]. International Journal of Refrigeration, 2006, 29 ( 8 ) : 1332 - 1339.
  • 6Pecharsky V K, Gschneidner Jr. in Gd5 (Si2Ge2) [ J]. Physical 4494 - 4497.
  • 7K A. Giant magnetocaloric effect Review Letter, 1997, 78(23): Yu B F, Liu M, Egolf P W, et al. A review of magnetic refrigera- tor and heat pump prototypes built before the year 2010 [ J]. Inter- national Journal of Refrigeration-Revue Internationale Du Froid, 2010,33 : 1029 - 1060.
  • 8Gatti J M, Vasile Muller C, Brumpter G, et al. Magnetic heat pumps-configurable hydraulic distribution for a magnetic coolingsystem[ C ] //Fifth IIF-IIR International Conference on Magnetic Refrigeration at Room Temperature. Grenoble, France: Grenoble Electrical Engineering Laboratory, 2012:17 -20.
  • 9Cooltech Applications Company. The Magnetic refrigeration sys- tem: cooling and heating [ EB/OL]. [ 2014-07-24 ] : bttp: // www. coohech-applications, corn/magnetic-refrigeration-system, ht- ml.
  • 10Rowe A, Tura A. Experimental investigation of a three material layered active magnetic regenerator[ J]. International Journal of Refrigeration, 2006, 29 (8) : 1286 - 1293.

二级参考文献8

共引文献1

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部