期刊文献+

融入节点重要性和标签影响力的标签传播社区发现算法 被引量:7

Label Propagation Algorithm for Community Detection Based on Vertex Significance and Label Influence
下载PDF
导出
摘要 近年来,高质量社区的挖掘和发现已经成为社会网络研究一个热点.其中,基于标签传播的社区挖掘算法(Label Propagation Algorithm,简称LPA)由于具有近似线性时间复杂度且无须预先定义目标函数和社区数量等优点而得到广泛关注.但是,LPA算法的标签传播过程存在不确定性和随机性,影响了社区发现的准确性和稳定性.提出一种新的基于标签传播的社区发现算法LPA_SI(Label Propagation Algorithm based on Significance and Influence).首先,采用新的节点重要性度量方法对节点进行排序;其次,提出一种新的标签影响力计算方法更新每个节点的标签;最后,在真实数据集和人工数据集上的实验表明,LPA_SI在复杂度相近的情况下能够显著提高社区发现的质量,并具有较好的稳定性. In recent years, mining and detecting of high quality communities has become a hot orientation in social network research. Among them,the community detection algorithms based on label propagation ( LPA ) receive broad attention for the advantages of near-linear complexity and no prerequisite for any object function or cluster number. However, the propagation of labels contains un- certainty and randomness, which affects the accuracy and stability of the LPA algorithms. In this paper, a novel community detection algorithm based on LPA called LPA_SI { LPA based on Significance and Influence ) is proposed. Firstly,the vertices are sorted accord- ing to a new vertex importance measure. Then, the label of each vertex is updated according to a new label influence measure. The ex- periments on both the artificial datasets and the real-world datasets demonstrate that the LPA_SI algorithm significantly improves the community quality while the detection stability is preserved.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第6期1171-1175,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61103175 61300104)资助 教育部科学技术研究重点项目(212086)资助 福建省科技创新平台建设项目(2009J1007)资助 福建省自然科学基金项目(2013J01230)资助 福建省高校杰出青年科学基金项目(JA12016)资助 福建省高等学校新世纪优秀人才支持计划项目(JA13021)资助
关键词 社会网络 社区发现 标签传播 标签影响力 节点重要性 social network community detection label propagation label influence node significance
  • 相关文献

参考文献5

二级参考文献108

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2王林,戴冠中.复杂网络中的社区发现——理论与应用[J].科技导报,2005,23(8):62-66. 被引量:50
  • 3高琰,谷士文,唐琎.基于链接分析的Web社区发现技术的研究[J].计算机应用研究,2006,23(7):183-185. 被引量:17
  • 4刘宏鲲,周涛.中国城市航空网络的实证研究与分析[J].物理学报,2007,56(1):106-112. 被引量:144
  • 5Getoor L, Diehl C P. Link mining: A survey [J]. SIGKDD Explorations, 2005, 7(2): 3-12.
  • 6Girvan M, Newman M E J. Community structure in social and biological networks [J]. Proc of the National Academy of Sciences, 2002, 99(12): 7821-7826.
  • 7Han Jiawei. Data Mining= Concepts and Techniques [M]. Kamber M. 2nd ed. Beijing: China Machine Press, 2006.
  • 8Newman M E J. Detecting community structure in networks [J]. The European Physical Journal B Condensed Matter and Complex Systems, 2004, 38(2): 321-3:30.
  • 9Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical ReviewE, 2004, 69(6): 066133.
  • 10Brandes U. faster algorithm for betweenness centrality [J]. Journal of Mathematical Sociology, 2001, 25:163-177.

共引文献265

同被引文献31

  • 1王丹,刘发升.复杂网络的社区发现算法研究[J].计算机时代,2009(3):57-59. 被引量:5
  • 2赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 3Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’networks. Nature, 1998,393(6684): 440-442.
  • 4Barabasi AL, Albert R. Emergence of scaling in randomnetworks. Science, 1999,286(5439): 509-512.
  • 5Girvan M, Newman MEJ. Community structure in social andbiological networks. Proc. of the National Academy ofSciences, 2002, 99(12): 7821-7826.
  • 6Raghavan UN, Albert R, Kumara S. Near linear timealgorithm to detect community structures in large-scalenetworks. Physical Review E, 2007,76(3): 036106.
  • 7Barber MJ, Clark JW. Detecting network communities bypropagating labels under constraints. Physical Review E,2009,80(2): 026129.
  • 8Cordasco G, Gargano L. Community detection via semi-synchronous label propagation algorithms. 2010 IEEEInternational Workshop on Business Applications of SocialNetworic Analysis (BASNA). IEEE. 2010. 1-8.
  • 9Newman MEJ, Girvan M. Finding and evaluating communitystructure in networks. Physical Review E,2004,69(2):026113.
  • 10Waltman L, van EckNJ. A smart local moving algorithm forlarge-scale modularity-based community detection. TheEuropean Physical Journal B, 2013, 86(11): 1-14.

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部