期刊文献+

融合距离度量学习和SVM的图像匹配算法 被引量:9

Fusion Method of Distance Metric Learning and SVM for Image Matching
下载PDF
导出
摘要 目前度量学习方法通过有限样本数据学习得到新度量后,采用简单的分类器(如直接欧式距离计算)通常不能达到最佳分类效果.SVM作为一种经典的分类器,具有优秀的线性和非线性分类能力,可以弥补距离度量学习方法的不足.对此,提出一种应用于图像匹配的融合距离度量学习和SVM的(DML-SVM)算法.首先,利用度量学习方法得到的线性变换矩阵,将样本变换到新的特征空间,降低特征各维度之间的相关性,调整特征各维度的权重;然后通过SVM对新特征进行线性或非线性分类.通过在LFW,Pubfig,Toycars三个图像数据库上的测试结果表明:融合方法的分类能力优于度量学习和SVM算法各自单独使用时的性能,且融合算法对训练样本数量具有很强的鲁棒性,即使只有少量训练样本(180个)时,融合算法仍然能具有较高的分类能力. Generally,the distance metric learning method trained with limited samples can not achieve the best classification perform- ance for the image matching by using a simple classification ( such as Euclidean distance computing }. SVM that is a classic classifier with excellent linear and nonlinear classification ability can make up for the lack of distance metric ,learning methods. This paper pres- / / ents a fusion method of distance metric learning and SVM ( DML-SVM } for image matching. First, the feature extracted from images is transformed into a new feature space by the transformation matrix obtained from DML, which reduces the correlation between each dimension of feature ~ and optimizes the weight of each dimensions. Then the linear or non-linear SVM classifier is used to classify samples. The experimental results on the LFW, Pubfig and ToyCars databases show that the fusion method improve the recognition ac- curacy compared to single distance metric learning method or SVM, and the fusion method is robust to the number of training samples. Even if using only a small amount of training samples (180) ,the fusion method still has good classification performance.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第6期1353-1357,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61300025)资助 教育部博士点基金项目(20123514120013)资助 福州大学引进人才基金项目(022428)资助
关键词 机器学习 距离度量学习 SVM 图像匹配 machine learning distance metric learning SVM image matching
  • 相关文献

参考文献26

  • 1Kulis B. Metric learning: a survey[J]. Machine Learning, 2012 ,5 (4) :287-364.
  • 2Yang L. An overview of distance metric learning[C]. IEEE Confer?ence on Computer Vision and Pattern Recognition Conference (CVPR) ,2007.
  • 3TenenbaumJ B, Silva V D, LangfordJ C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000,290(5500):2319-2323.
  • 4Roweis S, Saul L. Nonlinear dimensionality reduction by locally lin?ear embedding[J]. Science,2000,290(5500) :2323-2326.
  • 5Belkin M,Niyogi P. Laplacian eigenmaps for dimensionality reduc?tion and data representation[J]. Neural Computation ,2003,15 (6) : 1373-1396.
  • 6Xing E P, Ng A Y,Jordan M I, et al. Distance metric learning with application to clustering with side-information[C]. Advances in Neural Information Processing Systems (NIPS) ,2003 : 521-528.
  • 7Weinberger K Q, Saul L K. Distance metric learning for large mar?gin nearest' neighbor classification[C] . Advances in Neural Infor?mation Processing Systems (NIPS) ,2006,18:1473.
  • 8DavisJ V, Kulis B,Jain P,et al. Information-theoretic metric learn?ing[C]. Proceedings of the 24th International Conference on Ma?chine Learning (ICML) , ACM,2007 :209-216.
  • 9Guillaumin M, VerbeekJ, Schmid C. Is that you? Metric learning approaches for face identification[C]. IEEE 12th International Con?ference on Computer Vision (ICCV) ,2009 :498-505.
  • 10Ying Y ,Li P. Distance metric learning with eigenvalue optimization[J]. TheJournal of Machine Learning Research,2012, 13: 1-26.

同被引文献57

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部