期刊文献+

基于改进ENN2聚类算法的多故障诊断方法 被引量:40

Multi-fault diagnosis method based on improved ENN2 clustering algorithm
原文传递
导出
摘要 针对可拓神经网络无法解决多故障诊断的问题,建立问题模型,将多故障诊断问题转化为多特征样本的聚类问题从模型结构和学习算法两个方面对ENN2进行改进,提出基于改进ENN2聚类算法的多故障诊断方法,并对其参数和时间复杂度进行分析采用工程实例对所提出的方法进行验证,结果表明,所提出的方法能够解决离线的多故障诊断问题,且得到的诊断模型可用于在线状态监控。 For the problem that multi-fault diagnosis can not be solved by the extension neural network, a problem model is built, and the multi-fault diagnosis problem is transformed into the clustering problem for multi-attribute samples. ENN2 is improved from two faces of the model structure and learning algorithm, and the multi-fault diagnosis method based on the improved ENN2 clustering algorithm is proposed with the analysis of parameters and time complexity. The proposed method is verified by an engineering instance. The results show that the method can resolve the offline multi-fault diagnosis problem, and the obtained diagnosis model can also be applied to online fault monitoring, so it has a wide application prospect.
出处 《控制与决策》 EI CSCD 北大核心 2015年第6期1021-1026,共6页 Control and Decision
基金 武器装备预研基金项目(9140A27020212JB14311) "泰山学者"建设工程专项经费项目
关键词 多故障诊断 可拓神经网络 改进ENN2聚类算法 状态监控 multi-fault diagnosis extension neural network improved ENN2 clustering algorithm condition monitoring
  • 相关文献

参考文献14

  • 1Jing Jianping, Meng Guang. A novel method for multi- fault diagnosis of rotor system[J]. Mechanism and Machine Theory, 2009, 44(4): 697-709.
  • 2Saimurugan M, Ramachandran K J, Sugumaran V, et al. Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine[J]. Expert System with Applications, 2011, 38(4): 3819-3826.
  • 3Wang M H. Extension neural network for power transformer incipient fault diagnosis[J]. IEEE Proc Gener Trans on Distrib, 2003, 150(6): 679-685.
  • 4周玉,钱旭,张俊彩,孔敏.可拓神经网络研究综述[J].计算机应用研究,2010,27(1):1-5. 被引量:24
  • 5Wang M H, Hung C E Extension neural network[C]. Proc of the Int Joint Conf on Neural Networks. Oregon, 2003: 339-403.
  • 6Wang M H, Hung C E Extension neural network and its applications[J]. IEEE Trans on Neural Networks, 2003, 16(5): 779-784.
  • 7Wang M H, Hung C P. Extension neural network-type 2 and its applications[J]. IEEE Trans on Neural Networks, 2005, 16(6): 1352-1361.
  • 8Ye J. Application of extension theory in misfire fault diagnosis of gasoline engines[J]. Expert Systems with Application, 2009, 36(2): 1217-1221.
  • 9Kuei-Hsiang Chao, Chia-Lung Chiu, Ching-Ju Li, et al. A novel neural network with simple learning algorithm for islanding phenomenon detection of photovoltaic systems[J]. Expert Systems with Applications, 2011, 38(10): 12107-12115.
  • 10Hung-cheng Chen, Feng-chang Gu, Meng-hui Wang. A novel extension neural network based partial discharge pattern recognition method for high-voltage power apparatus[J]. Expert Systems With Applications, 2012, 39(3): 3423-3431.

二级参考文献54

共引文献35

同被引文献252

引证文献40

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部