期刊文献+

基于前向滚动EMD技术的预测模型 被引量:5

Prediction Model Based on Forward Rolling EMD
下载PDF
导出
摘要 运用经验模态分解(EMD)、人工神经网络(ANN)和时间序列,基于分解—重构—集成的思想,构建了一个组合预测模型。在模型的构建过程中,提出了对股票指数序列进行逐日前向滚动EMD分解的思路,将分解后的本征模函数(IMF)分量输入神经网络进行组合预测。运用上述基于前向滚动EMD模型分析沪深300指数和澳大利亚指数的波动特点和走势。结果显示:前向滚动EMD模型比ARIMA模型、GARCH模型和BP神经网络模型具有更高的预测精度。 A new combined forecasting model is built in this paper by using empirical mode decomposition(EMD), artificial neural network (ANN) and time series methods based on the idea of decomposition-reconstruction-integration. During the process of building this model,a new idea to decompose the stock index sequence by forward rolling EMD method is proposed. After decomposition,the intrinsic mode function(IMF) components are input into neural network to implement the combination forecast. Then this model is used to analyze the fluctuation characteris tics and the trend of Chinese Stock Index(CSI300) and Australian stock index. Empirical analysis result shows that, comparing with ARIMA model,GARCH model and BP neural network model,forward rolling EMD model obtains better forecasting result.
出处 《技术经济》 CSSCI 北大核心 2015年第5期70-77,共8页 Journal of Technology Economics
基金 中国智能金融研究院"融市场预测模型项目"(2014-2016)
关键词 经验模态分解 人工神经网络 前向滚动分解 本征模函数 EMD ANN forward rolling decomposition IMF
  • 相关文献

参考文献25

  • 1DE GOOIJER J G,RAY B K,KRAGER H.Forecasting exchange rates using TSMARS[J].Journal of International Money and Finance,1998,17(3):513-534.
  • 2AWARTANI B M A,CORRADI V.Predicting the volatility of the S&P-500stock index via GARCH models:the role of asymmetries[J].International Journal of Forecasting,2005,21(1):167-183.
  • 3PAI P F,LIN C S.A hybrid ARIMA and support vector machines model in stock price forecasting[J].OMEGAInternational Journal of Management Science,2005,33(6):497-505.
  • 4TALEBI H,HOANG W,GAVRILOVA M L.Multi-scale foreign exchange rates ensemble for classification of trends in Forex market[J].Procedia Computer Science,2014,29:2065-2075.
  • 5PAN H P,HAIDAR I,KULKARNI S.Daily prediction of short-term trends of crude oil prices using neural networks exploiting multimarket dynamics[J].Frontiers of Computer Science in China,2009,3(2):177-191.
  • 6COTFAS L-A.A finite-dimensional quantum model for the stock market[J].Physica A:Statistical Mechanics and its Applications,2013,392(2):371-380.
  • 7IN F,KIM S.Multiscale hedge ratio between the Australian stock and futures markets:evidence from wavelet analysis[J].Journal of Multinational Financial Management,2006,16(4):411-423.
  • 8Yu Lean,Wang Shouyang,Lai Kin Keung.Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm[J].Energy Economics,2008,30(5):2623-2635.
  • 9Zhang Xun,Yu Lean,Wang Shouyang,et al.Estimating the impact of extreme events on crude oil price:an EMDbased event analysis method[J].Energy Economics,2009,31(5):768-778.
  • 10Lin Chiun-Sin,Chiu Sheng-Hsiung,Lin Tzu-Yu.Empirical mode decomposition-based least squares support vector regression for foreign exchange rate forecasting[J].Economic Modelling,2012,29(6):2583-2590.

二级参考文献51

共引文献126

同被引文献21

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部