期刊文献+

疏水性安全壳壁面的硅表面微孔结构制备

Fabrication of Porous Microstructures on Si for Hydrophobic Containment Vessel Surface
下载PDF
导出
摘要 为构建疏水性安全壳内壁面涂层以提高事故中的传热能力,以Si作为功能涂层材料,在其表面上制备了不同圆孔间距及圆孔深度的微孔阵列样品以研究微米结构对表面疏水特性的影响,并对其疏水机理进行分析。结果表明,所制备的微孔样品润湿特性均符合Cassie-Baxter模型,在本征接触角为69.5°的Si表面通过微孔结构调控可显著提高疏水特性,获得了具有140°接触角的优异疏水特性样品而未进行表面化学修饰。研究结果为设计安全壳涂层材料及其表面微结构提供了技术方案,为强化核电站非能动安全壳冷却系统传热性能提供了解决思路。 To construct hydrophobic containment vessel (CV) surface to enhance heat transfer capability under accident conditions, porous microstructures with various diameters and heights on silicon wafers were systematically prepared, and the hydrophobic mechanism of the microstructures were investigated. Results show that the wetting characteristics of all the samples belong to the CassieBaxter model. The hydrophobic properties can be effectively improved by microstructure modulation, and the contact angles are dramatically enhanced from 69.5° to 140° without chemical modifications. The results provide solutions for design of coating materials in CV, as well as the methods for enhancing the heat transfer performance of passive containment cooling system in a nuclear power plant.
出处 《中国表面工程》 EI CAS CSCD 北大核心 2015年第3期90-95,共6页 China Surface Engineering
基金 国家核电技术公司员工自主创新项目(SNP-KJ-CX-2013-9)
关键词 疏水性 涂层 微观结构 安全壳 核电站 hydrophobicity coating microstructure containment vessel nuclear power plant
  • 相关文献

参考文献24

  • 1叶成,郑明光,王勇,邱忠明,王明路,李永春,曹臻.A P1000钢制安全壳厚度对传热性能的影响[J].原子能科学技术,2014,48(3):457-461. 被引量:9
  • 2Sha W, Chien T, Sun J, et al. Analysis of large-scale tests for AP-600 passive containment cooling system [J]. Nuclear Engineering and Design, 2004, 232(2) : 197-216.
  • 3Liu Z, Sunden B, Yuan J. VOF modeling and analysis of filmwise condensation between vertical parallel plates [J]. Heat Transfer Research, 2012, 43(1): 47-68.
  • 4Chen C H, Cai Q J, Tsai C L, et al. Dropwise condensa- tion on superhydrophobic surfaces with two-tier roughness [J]. Applied Physics Letters, 2007, 90(17)~ 173108.
  • 5Chen X, Wu J, Ma R, et al. architectures for continuous Nanograssed micropyramidal dropwise condensation [J]. Advanced Functional Materials, 2011, 21(24): 4617-23.
  • 6Ma X, Wang S, Lan Z, et al. Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas [J]. Journal of Heat Transfer, 2012, 134(2), 021501-10.
  • 7Koch G, Kraft K, Leipertz A. Parameter study on the per- formance of dropwise condensation [J]. Revue g6n6rale de thermique, 1998, 37(7)~ 539-48.
  • 8Si Y, Guo Z. Superhydrophobic nanocoatings~ from mate- rials to fabrications and to applications [J]. Nanoscale, 2015, 7(14): 5922-46.
  • 9Wang J N, Zhang Y L, Liu Y, et al. Recent developments in superhydrophobic graphene and graphene-related mate- rials: from preparation to potential applications [J]. Nanoscale, 2015, 7(16).- 7101-14.
  • 10Yu S, Guo Z, Liu W. Biomimetie transparent and superhy- drophobic coatings~ from nature and beyond nature [J]. Chemical Communications, 2015, 51(10): 1775-94.

二级参考文献19

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部