期刊文献+

8-rank of the class group and isotropy index

8-rank of the class group and isotropy index
原文传递
导出
摘要 Suppose F = Q(√-p1 pt) is an imaginary quadratic number field with distinct primes p1,..., pt,where pi≡ 1(mod 4)(i = 1,..., t- 1) and pt ≡ 3(mod 4). We express the possible values of the 8-rank r8 of the class group of F in terms of a quadratic form Q over F2 which is defined by quartic symbols. In particular,we show that r8 is bounded by the isotropy index of Q. Suppose F = Q(√-p1 pt) is an imaginary quadratic number field with distinct primes p1,..., pt,where pi≡ 1(mod 4)(i = 1,..., t- 1) and pt ≡ 3(mod 4). We express the possible values of the 8-rank r8 of the class group of F in terms of a quadratic form Q over F2 which is defined by quartic symbols. In particular,we show that r8 is bounded by the isotropy index of Q.
作者 LU Qing
出处 《Science China Mathematics》 SCIE CSCD 2015年第7期1433-1444,共12页 中国科学:数学(英文版)
基金 supported by China Postdoctoral Science Foundation(Grant No.2013M541064) National Natural Science Foundation of China(Grant No.11371043) National Basic Research Program of China(Grant No.2013CB834202)
关键词 imaginary quadratic field class group 8-rank isotropy index Redei matrix 各向同性 集体 mod 二次场 指数界 素数 虚数 四次
  • 相关文献

参考文献1

二级参考文献21

  • 1Barrucand, P., Cohn, H.: Note on primes of type x2 +32y2, class number, and residuacity. J. Reine Angew. Math., 238, 67-70 (1969).
  • 2Conner, P. E., Hurrelbrink, J.: Class Number Parity, Set. Pure Math. 8, Would Sci., Singapore, 1988.
  • 3Conner, P. E., Hurrelbrink, J.: On the 4-rank of the tame kernel /(2(O) in positive definite terms. J. Number Theory, 88, 263-282 (2001).
  • 4Gerth III, F.: Counting certain number fields with prescibed/-class numbers. J. Reine Angew. Math., 337, 195-207 (1982).
  • 5Gerth III, F.: The 4-class ranks of quadratic fields. Invent. Math., 77, 489-515 (1984).
  • 6Gerth III, F., Graham, S. W.: Application of a character sum estimate to a class number densities. J. Number Theory, 19, 239-247 (1984).
  • 7Guo, X.: On the 4-rank of tame kernels of quadratic number fields. Acta Arith., 13{}(2), 135-149 (2009).
  • 8Hurrelbrink, J., Yue, Q.: On ideal class groups and units in terms of the quadratic form x2 q- 32y2. Chin. Ann. Math. Ser. B, 26(2), 253-274 (2005).
  • 9Kaplan, P.: Sur le 2-groupe des classes d'idaux des corps quadratiques. J. Reine Angew. Math.~ 283/284, 313-363 (1976).
  • 10Stevenhagen, P.: Divisibity by 2-powers of certain quadratic class numbers. J. Number Theory, 43, 1-19 (1993).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部