期刊文献+

一种快速的三维块匹配图像去噪方法 被引量:2

Image Denoising with a Fast Block-Matching and 3D Filtering Algorithm
下载PDF
导出
摘要 为了在不降低三维块匹配算法(BM3D)效果的基础上,提高其运算速度,提出一种基于积分图的BM3D的加速算法.在新的算法中,首先利用高斯滤波器对原图像进行粗去噪,再利用积分图计算块的相似性,在块的相似度计算过程中不再进行滤波.在BM3D的第二步维纳滤波中,经过对原算法计算过程进行相应的转换,也可将积分图应用于该阶段.实验表明,改进后的算法,不但保留了三维块匹配算法在去噪方面好的性质,而且运算时间缩短了近1/4. In order to reduce the computation time an accelerated algorithm which based on the efficient Summed Square Image (SSI) scheme is proposed in this paper. The new algorithm uses Gaussian filter to do the coarse denoising for original image first, and then SSI scheme is introduced to calculate the similarity of block. Besides, in the second process of BM3D which called wiener filtering, integral image can also be applied after the corresponding conversion of the original algorithm. Experiments have shown that the proposed algorithm not only retains the superior performance time by about 3 times of BM3D algorithm, but also reduces the operation
出处 《广西民族大学学报(自然科学版)》 CAS 2015年第2期73-80,共8页 Journal of Guangxi Minzu University :Natural Science Edition
基金 广西自然科学基金项目(2012GXNSFAA053227) 广西民族大学中国-东盟研究中心项目(KT201325) 广西民族大学研究生教育创新计划项目(gxun-chx2014088)
关键词 三维块匹配 图像去噪 高斯滤波器 积分图 快速傅里叶变换 block--matching and 3D filtering gaussian filter image denoising summed square image fast fourier transform
  • 相关文献

参考文献17

  • 1Elad M, Aharon M. Image Denoising via Sparse and Redundant Representations over Learned Dictionaries[J']. IEEE Transactions on Image Process, 2006, 15(2): 3736- 3745.
  • 2Li Shutao, Vin Haitao, Fang Leyuan. Group-sparse representa- tion with dictionary learning for medical image denoising and fu- sion[J]. IEEE Transactions on Biomedical Engineering, 2012, 59 (12) : 3450.
  • 3David K. Hammond and Eero P.Simoncelli.Image Modeling and De- noising With Orientation- Adapted Gaussian Scale Mixtures[J]. IEEE Transactions on Image Processing, 2008, 17 ( 11 ) : 2089 - 2101.
  • 4Goossens B, Pivzurica A, Philips W. Image Denoising Using Mix- tures of Projected Gaussian Scale Mixtures[J]. IEEE Transactions on Image Processing, 2009, 18(8): 1689-1702.
  • 5Rakvongthai Y, Vo P N. Complex Gaussian Scale Mixtures of Complex Wavelet Coefficients[J']. IEEE Transactions on Signal- Processing, 2010, 58(7): 3545- 3556.
  • 6Foi A,Katkovnik V, Egiazarian K. Pointwise Shape- Adaptive DCT for High-quality Denoising and Deblocking of Grayscale and Color Images[J']. IEEE Transactions on Image Processing, 2007, 16(5):1395- 1411.
  • 7Bergmann Orjan, Christiansen Oddvar, Lie Johan, Lundervold Arvid. Shape- Adaptive DCT for Denoising of 3D Scalar and Ten- sor Valued Images[J]. Journal of Digital Imaging, 2009, 22(3): 297-308.
  • 8Tasdizen T. Principal Neighborhood Dictionaries for Non-local Means Image Denoising I-J]. IEEE Transactions on Image Process- ing, 2009,18(12) :2649-2660.
  • 9B. K. ShreyamshaKumar. Image denoising based on non- local means filter and its method noise thresholdingEJ]. Signal Image and Video Processing, 2013, 7(6):1211- 1227.
  • 10Dabov K,Foi A:Katkovnik V,et al. Image Denoising by Sparse 3D Transform-domain Collaborative Filtering[J]. IEEE Trans- actions on Image Processing, 2007, 16(8): 2080-2095.

二级参考文献39

  • 1吕相银,黄超超,凌永顺.红外成像跟踪算法性能及应用分析[J].红外技术,2004,26(4):11-15. 被引量:7
  • 2Dabov K,Foi A,Katkovnik V,et al.Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Traus Image Process,2007,16(8):2080-2095.
  • 3Mallat S G.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Trans on Pattem Analysis and Machine Intelligence,1989,11(7):674-693.
  • 4Jansen M.Noise reduction by wavelet thresholding[M].New York:Springer-Verlag,2001.
  • 5Kaur L,Gupta S,Chauhan R C.Image denoising using wavelet thresholding[C] //3rd Indian Conference on Computer Vision Graphics and Image Processing,ICVGIP,2002.
  • 6VIOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C].IEEE Conference on Computer Vision and Pattern Recognition,2001:511-518.
  • 7WEI S,LAI S.Fast template matching based on normalized cross correlation with adaptive multilevel winner update[J].IEEE Trans on Image Process,2008,17(11):2227-2235.
  • 8BUADES A, COLL B, MOREL J M. A :view of image denoising algo- rithms with a new one [ J ]. Multiscale Modeling and Simulation, 2005,2(4) :490-530.
  • 9HAJIABOL M R. A self-govenfing fourth-order nonlinear diffusion fil- ter for image uoise removal [ J]. IPSJ Trans on Computer Vision and Applications ,2010,2:94-103.
  • 10AL-AMRI M S S,KALYANKAR N V, KHAMITKAR S D A. Compa- rative study of removal noise from remote sensing image[ J]. IJCSI In- ternational Journal of Computer Science Issues, 2010,7 ( [ ) : 32-36.

共引文献46

同被引文献24

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部