期刊文献+

基于局部特征和MeanShift的目标跟踪算法研究 被引量:4

Research on Object Tracking Method Based on Local Feature and Mean Shift
下载PDF
导出
摘要 利用均值漂移进行目标跟踪的算法,在被跟踪目标出现旋转、尺度变化、噪声干扰等情况下,无法得到准确的跟踪结果。文中提出了基于当前流行目标跟踪算法和局部特征相结合的算法,基于局部特征—形状上下文(Shape Context)特征的Mean Shift目标跟踪算法。该算法首先提取目标的轮廓信息和特征,根据采样点之间位置和距离关系建立Shape Context直方图,最后所有点的Shape Context直方图构成了图像的Shape Context特征,最后根据Mean Shift算法进行跟踪。实验结果表明,该算法在跟踪目标出现尺度变化、旋转、噪声干扰和遮挡等情况下能够准确地跟踪物体,鲁棒性好。 Accurate tracking results are unobtainable by the traditional algorithm of Mean Shift due to noise, rotation and changed scales of the target etc. A shape context tracking algorithm for Mean Shift objects is proposed by combining the current popular target tracking algorithm and local features. The contour information and features of shape context are extracted from the target. Then a shape context histogram is established according to the locations and spacing of sample points and the histograms of all the points constitutes the shape context feature of the image after which the Mean Shift algorithm is adopted for tracking. The experimental results show that the algorithm can accurately track the object with scale change, rotation, noise and is of good accuracy and robustness.
出处 《电子科技》 2015年第6期13-16,共4页 Electronic Science and Technology
关键词 局部特征 形状上下文 均值漂移 目标跟踪 local feature shape context mean shift target tracking
  • 相关文献

参考文献6

二级参考文献32

  • 1范培蕾,张晓今,杨涛,寇保华.末敏子弹图像序列中机场跑道线目标的跟踪及处理算法研究[J].中国图象图形学报,2008,13(1):75-79. 被引量:1
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3Nummiaro K,Roller-Meier E,Van Gool L.An adaptive color-based particle filter[J].Image and Vision Computing,2003,21(1):99-110.
  • 4Dalai N,Triggs B.Histograms of oriented gradients for human detection[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society Press,2005:886-893.
  • 5Birchfield S T,Rangarajan S.Spatiograms versus histograms for region-based tracking[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society Press,2005:1158-1163.
  • 6Han B,Comaniciu D,Zhu Y,et al.Sequential kernel density approximation and its application to real-time visual tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(7):1186-1197.
  • 7Lim J,Ross D,Lin R S,et al.Incremental learning for visual tracking[C] //Proceedings on Advances in Neural Information Processing Systems.Columbia:MIT Press,2005:793-800.
  • 8Porikli F.Integral histogram:a fast way to extract histograms in Cartesian spaces[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society Press,2005:829-836.
  • 9Shlens J.A tutorial on principal component analysis[OL].[2009-05-13].http://www.cs.cmu.edu /-elaw/ papers/pca.pdf.
  • 10Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non -Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.

共引文献91

同被引文献22

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部