期刊文献+

缺碳或缺氮对小麦幼苗生长发育的影响 被引量:5

Effects of Carbon / Nitrogen-Deficient on the Growth and Development of Wheat Seedlings
下载PDF
导出
摘要 对小麦(Triticum aestivum Linn.)幼苗进行缺碳或缺氮(碳/氮饥饿)处理,测量小麦幼苗的苗长、根长、胚芽鞘长和根数,研究碳/氮饥饿对小麦幼苗生长发育的影响。另外,应用PI(Propidium Iodide碘化丙啶)染色法观察根尖死细胞,应用伊文思蓝染色法测定细胞活性,进一步探讨其机理。结果表明,氮饥饿显著降低小麦幼苗的根长和苗长,而碳饥饿对小麦幼苗早期生长的影响不显著,但幼苗叶色显著发黄。氮饥饿显著降低小麦幼苗根尖细胞活性并使细胞死亡数量增加,而碳饥饿处理后小麦根系细胞活性不受影响但死亡细胞仍比对照增多。因此,缺碳或缺氮通过增加根尖的细胞死亡数量显著抑制小麦幼苗根系的生长发育。 The lack of carbon or nitrogen processing were used in wheat seedling,length of wheat seedling shoot, root, coleoptile and root number were measured to clarify the effects of carbon or nitrogen deficient on growth and development of wheat seedling. In addition,observed the dead root tip cells with PI (Propidium Iodide) staining,detenninated the cell activity with Evans blue staining,To further explore mechanism, we have tested the dead cells of root tip by PI staining and cell activity by Evans blue staining. The results showed that nitrogen starvation significantly reduced the length of wheat seedling root and shoot,whereas carbon starvation had no significant influence on the early growth of the wheat seedling, but the seedling leaves turned yellow significantly. Nitrogen starvation significantly reduced cell activity of root tip cells and increased the dead cells number of wheat seeding, while under carbon starvation cell activity of root tip cells were not affected and the number of dead cells of root tip cells still increased. Therefore, carbon or nitrogen deficiency inhibited the growth and the development of wheat roots by increasing the number of dead cells of root tip cells.
出处 《湖北农业科学》 2015年第8期1822-1824,共3页 Hubei Agricultural Sciences
基金 河南省教育厅自然科学重点资助项目(13A180165)
关键词 碳饥饿 氮饥饿 小麦(Triticum aestivum Linn.) 根尖 carbon starvation nitrogen starvation wheat(Triticum aestivum Linn.) root tip
  • 相关文献

参考文献1

二级参考文献55

  • 1Levine B, Klionsky DJ. Development by self-digestion: Molecu- lar mechanisms and biological functions of autophagy. Dev Cell 2004; 6(4): 463-77.
  • 2Bassham DC, Laporte M, Marry F, Moriyasu Y, Ohsumi Y, O1- sen L J, et al. Autophagy in development and stress responses of plants. Autophagy 2006; 2( 1 ): 2-11.
  • 3Bassham DC. Function and regulation of macroautophagy in plants. Biochim Biophys Acta 2009; 1793(9): 1397-403.
  • 4Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27: 107-32.
  • 5Xie Z, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nat Cell Biol 2007; 9(10): 1102-9.
  • 6Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nat Rev Mol Cell Biol 2009; 10(7): 458-67.
  • 7lzumi M, Hidema J, Ishida H. Deficiency of autophagy leads to significant changes of metabolic profiles in Arabidopsis. PlantSignal Behav 2013, doi: 10.4161/psb.25023.
  • 8Li F, Vierstra RD. Autophagy: A multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 2012; 17(9): 526-37.
  • 9Liu Y, Bassham DC. Autophagy: Ppathways for self-eating in plant cells. Annu Rev Plant Biol 2012; 63: 215-37.
  • 10Zhou J, Wang J, Cheng Y, Chi YJ, Fan B, Yu JQ, et al. NBR1- mediated selective autophagy targets insoluble ubiquitinated pro- tein aggregates in plant stress responses. PLoS Genet 2013; 9(1): e1003196.

共引文献5

同被引文献82

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部