期刊文献+

基于单核和组合核函数在垃圾邮件过滤中的比较应用 被引量:1

The application of spam filtering based on single kernel and hybrid kernel function
下载PDF
导出
摘要 大多数文本为高维且线性不可分。针对中文邮件,首先阐述了邮件预处理的相关方法,利用TF-TDF将邮件向量化。分析了多种常用核函数在SVM中应用于垃圾邮件过滤。阐述了全局核函数和局部核函数的特点,主要针对全局核函数-多项式(Poly)核函数和局部核函数-径向基核(RBF)函数在垃圾邮件分类的准确性做了比较,综合分析后组合两种核函数。实验证明,组合核函数在性能上优于单个核函数,具有较好的学习能力和泛化能力。 Most of the text for high-dimensional and linear inseparable.On account of Chinese email, first express the pretreatment method of email, use TF-TDF to make the email to be vectorization.Then analyze several kernel function in SVM is applied to spam filtering. This paper explains global kernel function-Polynomial kernel function and local kernel function- RBF kernel function and compares the accuracy of spam filtering.After comprehensive analysis of these two kinds Kernels,then combination of them.As the experimental results and analysis shows that the combination of kernel functions on the performance is better than that of single kernel function.That combination is equipped with good learning ability and generalization ability.
作者 吴陈 孙伟
出处 《电子设计工程》 2015年第11期51-53,共3页 Electronic Design Engineering
关键词 全局核函数 局部核函数 组合核函数 支持向量机 global kernel function local kernel function hybrid kernel function support vector machine
  • 相关文献

参考文献8

  • 1Vapnik V N. The Nature of Statistical Learning Theory[M]. New York : Springer-Verlag, 1995.
  • 2VAPNIK V N. statistical Leaming'Iheory[M]. New York :John Wiley&sons, 1998.
  • 3Li Zhi-feng.Using support vector machines to enhance the performance of bayesian face recognition[J]. IEEE Transac- tions on Information Forensics and Security,2007,2 (2): 174-180.
  • 4TOM F. In vivo spam filtering :A challenge problem for data mining[J]. KDD Explorations, 2003,5 (2): 140-148.
  • 5Mercer J. Functions of positive and negative type and their connection with the theory of integral equations[J]. Trans.Roy Soc London A, 1990,209 : 415-416.
  • 6Smola A J. Learning with Kernel [D]. Bedin:Ph D Thesis Berlin, 1998.
  • 7张冰,孔锐.一种支持向量机的组合核函数[J].计算机应用,2007,27(1):44-46. 被引量:22
  • 8傅清秋,谢永华,汤波,张恒德.基于组合核函数SVM沙尘暴预警技术的研究[J].计算机工程与设计,2014,35(2):646-650. 被引量:6

二级参考文献18

  • 1张冰,孔锐.一种支持向量机的组合核函数[J].计算机应用,2007,27(1):44-46. 被引量:22
  • 2VAPNIK VN.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
  • 3BURGES CJC.A tutorial on support vector machines for pattern recognition[J].Knowledge Discovery and Data Mining,1998,2(2):121-167.
  • 4MULLER KR,MIKA S,G.RTSCH,et al.An Introduction to Kernel-Based Learning Algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201.
  • 5SCHOLKOPF B,MIKA S,BURGES CJC,et al.Input space versus feature space in kernel-based methods[J].IEEE Transactions on Neural Networks,1999,10(5):1000-1017.
  • 6SCHOLKOPF B,SMOLA AJ.Learning with Kernels[M].MA:MIT Press,2001.
  • 7SAUNDERS C,STITSON MO,WESTON J,et al.Support vector machine reference manual[R].Technical Report CSD-TR-98-03.Royal Holloway University,1998.
  • 8SMITS GF,JORDAN EM.Improved SVM regression using mixtures of kernels[A].IEEE Proceeding of IJCNN '02 on Neural Networks[C].2002,3.2785-2790.
  • 9SCHOLKOPF B.The Kernel Trick for Distances[R].Technical Report MSR-TR-2000-51,Microsoft Research,2000.
  • 10CRISTIANINI N,SHAWE-TAYLOR J.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].The Syndicate of the Press of the University of Cambridge,2000.

共引文献26

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部