期刊文献+

基于ORB算法改进的影像匹配方法 被引量:5

An Improved Image Matching Method Based on ORB Improved
原文传递
导出
摘要 在摄影测量学中应用ORB算法时,影像匹配存在特征分布不均、误匹配率较高及匹配精度为整像素级等不足。针对这些问题进行如下改进,控制特征数目及特征分布,增加核线约束及相关系数条件,结合最小二乘匹配算法。此外,为了增强该算法对大角度旋转影像的适应性,将影像间的仿射变换参数作为最小二乘匹配中几何畸变参数的初始值。实验证明,该算法应用于影像匹配时,不仅可以保持ORB算法的高效性,获得均匀分布、高精度的匹配特征,而且对大角度旋转影像具有一定适应性。 If ORB was applied to feature matching in Digital Photogrammetry, there would be many problems, such as unevenly distributing, high mismatching rate and low matching precision. In this paper, we solved these problems through controlling features' number and distribution, appending epipolar constraint and the correlation coefficient, and combining with the least squares matching. In addition, we calculated the affine transformation parameters between images, as initial value of geometric distortion parameters of the least squares matching. Experiments show that this algorithm can not only maintain the efficiency of ORB algorithm, to obtain well-distributed and high accuracy matching features, but also for larger rotation with a certain degree of adaptability.
出处 《测绘地理信息》 2015年第3期31-34,共4页 Journal of Geomatics
基金 国家自然科学基金资助项目(41271454)
关键词 ORB算法 特征匹配 最小二乘匹配 核线约束 相关系数 ORB feature matching least squares matching epipolar constraint correlation coefficient
  • 相关文献

参考文献6

  • 1Lowe D G. Distinctive Image Feature from Scale-invariant Keypoints[J]. International Journal of Computer Vision,2004,60(2) :91-110.
  • 2Rublee E, Rabaud V, Konolige K,et al. ORB: An Efficient Alternative to SIFT or SURF [ C ]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011.
  • 3张谦,贾永红,胡忠文.多源遥感影像配准中的SIFT特征匹配改进[J].武汉大学学报(信息科学版),2013,38(4):455-459. 被引量:36
  • 4Rosten E, Drummond T. Machine Learning lor High Speed Comer Detection [ C ]. ECCV European Conference on Computer Vision, Graz, Austria, 2006.
  • 5Calonder M,Lepetit V,Strecha C,et al. BRIEF:Binary Robust Independent Elementary Features [C]. ECCV European Conference on Computer Vision, Heraklion,Crete, Greece, 2010.
  • 6明洋,侯文广,吴颖丹.SIFT特征匹配旋转补偿的影像匹配方法[J].测绘科学,2011,36(3):19-21. 被引量:2

二级参考文献17

  • 1徐建斌,洪文,吴一戎.一种基于Zernike矩和稳态遗传算法的遥感图像匹配方法[J].电子与信息学报,2005,27(6):924-927. 被引量:4
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 3Onishi H, Suzuki H. Detection of Rotation and Parallel Translation Using Hough and Fourier Transforms [ C ] // IEEE Inter Conf Image Processing, 1996 : 827-830.
  • 4Lowe D. G. Object Recognition from Local Scale-invariant Features [ C ] //International Conference on Computer Vision, Corfu Greece, 1999: 1150-1157.
  • 5Ullah F, Kaneko S. Using Orientation Codes for Rotation Invariant Template Matching [ J] . Pattern Recognition, 2004, 37(2): 201-209.
  • 6Tsai. D M, Chiang C H. Rotation-invariant Pattern Matching Using Wavelet Decomposition [ J ] . Pattern Recognition Letters, 2002, 23: 191-201.
  • 7吕金健.基于特征的多源遥感图像配准技术研究[D].长沙:国防科技大学电子科学与工程学院,2008.
  • 8Lowe D G. Object Recognition from Local Scale In- variant Features [C]. International Conference on Computer Vision, Corfu, Greece, 1999.
  • 9Lowe D G. Distinctive Image Features from Scale invariant Keypoints [J] International Journal o{ Computer Vision, 2004, 60(2): 91-110.
  • 10Mikolajczyk K, Schmid C. A Performance Evalua- tion of Local Descriptors [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2005, 27(10) :1 615-1 630.

共引文献36

同被引文献35

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部