期刊文献+

Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance 被引量:9

Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance
原文传递
导出
摘要 In this study, we investigated the effects of exogenous calcium nitrate on photoinhibition and thylakoid protein level in peanut plants under heat (40 ℃) and high irradiance (HI) (1,200 mmol/m2 per s) stress. Compared with control seedlings (cultivated in 0 mmol/L Ca(NO3)2 medium), the maximal photochemical efficiency of photosystem II (PSII) in Ca2t‐treated plants showed a slight decrease after 5 h stress, accompanied by lower degree of PSII closure (1‐qP), higher non‐photochemical quenching, and lower level of membrane damage. Ca2t inhibitors were used to analyze the varieties of antioxidant enzymes activity and PSII proteins. These results indicated that Ca2t could protect the subunits of PSII reaction centers from photoinhibition by reducing the generation of reactive oxygen species. In the presence of both ethyleneglycol‐bis(2‐aminoethylether)‐tetraacetic acid and ascorbic acid (AsA), the net degradation of the damaged D1 protein was faster than that only treated with AsA. Our previous study showed that either the transcriptional or the translational level of calmodulin was obviously higher in Ca2t‐treated plants. These results suggested that, under heat and HI stress, the Ca2t signal transduction pathway can al eviate the photoinhibition through regulating the protein repair process besides an enhanced capacity for scavenging reactive oxygen species. In this study, we investigated the effects of exogenous calcium nitrate on photoinhibition and thylakoid protein level in peanut plants under heat (40 ℃) and high irradiance (HI) (1,200 mmol/m2 per s) stress. Compared with control seedlings (cultivated in 0 mmol/L Ca(NO3)2 medium), the maximal photochemical efficiency of photosystem II (PSII) in Ca2t‐treated plants showed a slight decrease after 5 h stress, accompanied by lower degree of PSII closure (1‐qP), higher non‐photochemical quenching, and lower level of membrane damage. Ca2t inhibitors were used to analyze the varieties of antioxidant enzymes activity and PSII proteins. These results indicated that Ca2t could protect the subunits of PSII reaction centers from photoinhibition by reducing the generation of reactive oxygen species. In the presence of both ethyleneglycol‐bis(2‐aminoethylether)‐tetraacetic acid and ascorbic acid (AsA), the net degradation of the damaged D1 protein was faster than that only treated with AsA. Our previous study showed that either the transcriptional or the translational level of calmodulin was obviously higher in Ca2t‐treated plants. These results suggested that, under heat and HI stress, the Ca2t signal transduction pathway can al eviate the photoinhibition through regulating the protein repair process besides an enhanced capacity for scavenging reactive oxygen species.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2015年第5期486-495,共10页 植物学报(英文版)
基金 supported by the Natural Science Foundation of Shandong Province (ZR2009DZ007 and ZR2011CQ042) the Supporting Plan of National Science and Technology of China (2014BAD11B04) the earmarked fund for Modern Agro-industry Technology Research System (CARS-14) Shandong Major Projects of Independent Innovation Achievement Transformation (2012ZHZXIA0418)
关键词 CALCIUM D1 protein heat and high irradiance stress PEANUT photosystem II Calcium D1 protein heat and high irradiance stress peanut photosystem II
  • 相关文献

参考文献3

二级参考文献12

共引文献74

同被引文献117

引证文献9

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部