期刊文献+

基于迁移学习的SAR目标超分辨重建 被引量:5

SAR target super-resolution based on transfer learning
原文传递
导出
摘要 针对合成孔径雷达(SAR)目标超分辨重建问题,提出了一种基于迁移学习的超分辨方法。在光学图像梯度域中联合训练超完备字典与稀疏编码映射,利用半耦合字典联系SAR图像与光学图像,寻找SAR图像在半耦合字典下的稀疏编码,并在高分辨率字典下完成重建。结合SAR图像的先验信息,使用正则化方法对SAR目标进行特征增强。所提方法在TerraSAR-X数据和MSTAR数据上进行了仿真实验,重建结果表明,相比目前的插值方法和稀疏表示方法,所提方法空间分辨率可提高0.5-1.5个像素。正则化增强结果表明,引入稀疏先验的正则化增强能够进一步提高空间分辨率并抑制杂波比,最后分析了正则化参数的选取对图像质量的影响。 Based on transfer learning, a method for synthetic aperture radar(SAR) target super-resolution reconstruction is proposed in this paper. A semi-coupled dictionary is jointly trained in the gradient domain of optical image. By utilizing the relationship revealed by semi-coupled dictionary, the sparse codes of SAR image are obtained. Then the image is reconstructed in the high resolution dictionary. Based on some prior knowledge of SAR image, the regularization method is also used in order to enhance the target feature. Several simulation experiments are conducted based on TerraSAR-X and MSTAR data, and the reconstructed results show that the spatial resolution obtained by the proposed method is 0.5-1.5 pixels higher compared to the current interpolation method as well as the sparse representation method. Regularization enhancement results show that it can further improve the spatial resolution and suppress clutters by introducing the sparse prior. Finally, the influences on the spatial resolution and target structure of the reconstruction image caused by regularization parameter are analyzed qualitatively.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第6期1940-1952,共13页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61102166) 山东省优秀中青年科学家科研奖励基金(BS2013DX003)~~
关键词 合成孔径雷达 超分辨 迁移学习 半耦合字典 稀疏表示 synthetic aperture radar super-resolution transfer learning semi-coupled dictionary sparse representation
  • 相关文献

参考文献20

  • 1周剑雄,石志广,胡磊,付强.基于频域稀疏非均匀采样的雷达目标一维高分辨成像[J].电子学报,2012,40(5):926-934. 被引量:7
  • 2毛新华,朱岱寅,朱兆达.一种超高分辨率机载聚束SAR两维自聚焦算法[J].航空学报,2012,33(7):1289-1295. 被引量:10
  • 3Freeman W T, Jones T R, Pasztor E C. Example based super-resolution[J]. IEEE Computer Graphics and Appli- cations, 2002, 22(2): 56-65.
  • 4Mallat S, Yu G. Super-resolution with sparse mixing esti- matorsJ3. IEEE Transactions on Image Processing, 2010, 19(11): 2889 2900.
  • 5Peleg T, Elad M. A statistical prediction model based on sparse representations for single image super-resolution [J], IEEE Transactions on Image Processing, 2014, 23(6) : 2569-2582.
  • 6Yang J, Wang Z, Lin Z, et al. Coupled dictionary trainingfor image super-resolution[J]. IEEE Transactions on Im- age Processing, 2012, 21(8)= 3467-3477.
  • 7Yang J, Wright J, Huang T S, et al. Image super-resolu- tion via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2851-2873.
  • 8Zeyde R, Elad M, Protter, M. On single image scale-up using sparse-representations [C]//Proceedings of the 7th International Conference on Curves and Surfaces, Avi- gnon, Berlin: Springer Berlin Heidelberg, 2010, 711-730.
  • 9Dong W S, Zhang L, Shi G M, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Im- age Processing, 2011, 20(7): 1838-1857.
  • 10Wang S L, Zhang L, Liang Y, et al. Semi-coupled dic- tionary learning with applications to image super-resolu- tion and photo-sketch synthesis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence. Piscataway, NJ: IEEE Press, 2012, 2216 2223.

二级参考文献32

  • 1王成,胡卫东,杜小勇,郁文贤.稀疏子带的多频段雷达信号融合超分辨距离成像[J].电子学报,2006,34(6):985-990. 被引量:14
  • 2SHI ZhiGuang ZHOU JianXiong ZHAO HongZhong FU Qiang.Study on joint Bayesian model selection and parameter estimation method of GTD model[J].Science in China(Series F),2007,50(2):261-272. 被引量:3
  • 3Denny M, Scott I. Anomalous propagation limitations to high-resolution SAR performance. Proceedings of the 2002 IEEE Radar Conference, 2002.. 249-254.
  • 4Mancill C E, Swiger J M. A map drift autofocus technique for correcting high order SAR phase errors. 27th Annual Tri-Service Radar Symposium, 1981 : 391-400.
  • 5Yoji G N. Phase difference auto focusing for synthetic ap- erture radar imaging: United States, US4999635. 1991- 03 12.
  • 6Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofocus a robust tool for high resolution SAR phase correction. IEEE Transactions on Aerospace and Elec- tronic Systems, 1994, 30(3): 827-834.
  • 7Jakowatz C V, Wahl D E. Eigenvector method for maxi- mum-likelihood estimation of phase errors in synthetic ap- erture radar imagery. Journal of the Optical Society of Amerion A, 1993, 10(12).. 2539-2546.
  • 8Warner D W, Ghiglia D C, Fitzgerrel A, et al. Two di mensional phase gradient autofocus. Proceedings of SHE, 2000: 162-173.
  • 9Zhu D Y. SAR signal based motion compensation through combining PGA and 2-D map drift. Proceeding of 2nd Asi- an-Pacific Conference on Synthetic Aperture Radar, 2009 .. 435-438.
  • 10Kirk J C, Lefevre R. Signal based motion compensation (SBMC). The Record of the IEEE 2000 International Ra- dar Conference, 2000: 463-568.

共引文献44

同被引文献27

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部