期刊文献+

Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer 被引量:14

Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer
原文传递
导出
摘要 Near-infrared (NIR) photothermal therapy has developed very quickly in recent years. However, its clinical applications are hindered by many practical problems, such as low accumulation in tumors, high laser power density and high biotoxicity in vivo. Herein, a versatile system combining chemotherapy with photothermal therapy for cancer therapy using ultrasmall Pd nanosheets (SPNS) has been developed. The SPNS can serve as pH-responsive drug carriers to efficiently deliver DOX into cancer cells and tumors. On the other hand, the coordinative loading of DOX on SPNS enhances its accumulation in tumor tissue. So we can efficiently ablate tumor using low-intensity laser radiation. Importantly, with ultrasmall size (-4.4 nm), SPNS surface-functionalized with reduced glutathione (GSH) can be cleared from the body through the renal system into the urine. This cancer therapeutic nanosystem, which exhibits a significant synergistic effect and low systemic toxicity, has great potential for clinical applications. 在红外线附近(NIR ) photothermal 治疗在最近的年里很快速发展了。然而,它的临床的应用程序被许多实际问题妨碍,例如在在 vivo 的肿瘤,高激光力量密度和高 biotoxicity 的低累积。此处,用 ultrasmall Pd nanosheets (SPNS ) 为癌症治疗把化疗与 photothermal 治疗相结合的一个万用的系统被开发了。SPNS 能担任 pH 应答的药搬运人高效地交付纪录影片进癌症房间和肿瘤。在另一方面,在 SPNS 上的纪录影片的同等的装载在肿瘤织物提高它的累积。我们能高效地因此用低紧张的激光放射切除肿瘤。与 ultrasmall 尺寸(4.4 nm ) ,重要地,有减少的谷胱甘肽(GSH ) 的 SPNS surface-functionalized 能通过肾的系统从身体被清除进尿。这癌症治疗学的 nanosystem,展出重要 synergistic 效果和低全身的毒性,为临床的应用程序有大潜力。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第1期165-174,共10页 纳米研究(英文版)
关键词 photothermal therapy CHEMOTHERAPY Pd nanosheets drug delivery synergistic effect 纳米系统 癌症治疗 近红外 化疗 Pd 增强型 多功能 超小型
  • 相关文献

参考文献3

二级参考文献45

  • 1Lovell, J. F.; Liu, T.; Chen, J., Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 2010, 110, 2839-2857.
  • 2Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring and optimization. Chem. Rev. 2010, 110, 2795-2838.
  • 3Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photo- dynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380-387.
  • 4Agostinis, P.; Berg, K.; Cengel, K. A., Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R., Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61,250-281.
  • 5Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889-905.
  • 6Bugaj, A. M. Targeted photodynamic therapy-a promising strategy of tumor treatment. Photochem. PhotobioL Sci. 2011, 10, 1097-1109.
  • 7Allison, R. R.; Downie, G. H.; Cuenca, R.; Hu, X. H.; Childs, C. J.; Sibata, C. H. Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther. 2004, 1, 2742.
  • 8Yang, H. Y.; Wang, F. Y.; Zhang, Z. Y. Photobleaching of chlorins in homogeneous and heterogeneous media. Dyes Pigm. 1999, 43, 109-117.
  • 9Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. H. V.; Zheng, G. Porphysome nanovesicles generated by porphyrinbilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324-332.
  • 10Davies, A.; Lewis, D. J.; Watson, S. P.; Thomas, S. G.; Pikramenou, Z. pH-controlled delivery of luminescent europium coated nanoparticles into platelets. Proc. Natl. Acad. Sci. USA 2012, 109, 1862-1867.

共引文献34

同被引文献69

  • 1LE GUYADER Laurent.“Smart”nanomaterials for cancer therapy[J].Science China Chemistry,2010,53(11):2241-2249. 被引量:4
  • 2Li, Xiao-Dong,Luo, Wen-Jian,Yao, Xin.Preface[J].Journal of Computer Science & Technology,2008,23(1):1-1. 被引量:204
  • 3Bert Hildebrandt,Peter Wust,Olaf Ahlers,Annette Dieing,Geetha Sreenivasa,Thoralf Kerner,Roland Felix,Hanno Riess.??The cellular and molecular basis of hyperthermia(J)Critical Reviews in Oncology and Hematology . 2002 (1)
  • 4Loo, Christopher,Lowery, Amanda,Halas, Naomi,West, Jennifer,Drezek, Rebekah.Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters . 2005
  • 5Chieh Hsiao Chen,Yi-Jhen Wu,Jia-Jin Chen,Madaswamy S. Muthu.??Gold Nanotheranostics: Photothermal Therapy and Imaging of Mucin 7 Conjugated Antibody Nanoparticles for Urothelial Cancer(J)BioMed Research International . 2015
  • 6Jian You,Peizun Zhang,Fuqiang Hu,Yongzhong Du,Hong Yuan,Jiang Zhu,Zuhua Wang,Jialin Zhou,Chun Li.??Near-Infrared Light-Sensitive Liposomes for the Enhanced Photothermal Tumor Treatment by the Combination with Chemotherapy(J)Pharmaceutical Research . 2014 (3)
  • 7Lei Wang,Jinjin Shi,Xin Jia,Ruiyuan Liu,Honghong Wang,Zhenzhen Wang,Lulu Li,Jing Zhang,Chaofeng Zhang,Zhenzhong Zhang.??NIR-/pH-Responsive Drug Delivery of Functionalized Single-Walled Carbon Nanotubes for Potential Application in Cancer Chemo-Photothermal Therapy(J)Pharmaceutical Research . 2013 (11)
  • 8Jian You,Rui Zhang,Guodong Zhang,Meng Zhong,Yang Liu,Carolyn S. Van Pelt,Dong Liang,Wei Wei,Anil K. Sood,Chun Li.??Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release(J)Journal of Controlled Release . 2011 (2)
  • 9Michael J.W. Johnston,Sean C. Semple,Sandy K. Klimuk,Steve Ansell,Norbert Maurer,Pieter R. Cullis.??Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin(J)BBA - Biomembranes . 2007 (5)
  • 10Peter Wust,Chie Hee Cho,Bert Hildebrandt,Johanna Gellermann.??Thermal monitoring: Invasive, minimal-invasive and non-invasive approaches(J)International Journal of Hyperthermia . 2006 (3)

引证文献14

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部