期刊文献+

Controlled synthesis of single-crystal SnSe nanoplates 被引量:9

Controlled synthesis of single-crystal SnSe nanoplates
原文传递
导出
摘要 Two-dimensional layered IV-VI chalcogenides are attracting great interest for applications in next-generation optoelectronic, photovoltaic, and thermoelectric devices. However, great challenges in the controllable synthesis of high-quality IV-VI chalcogenide nanostructures have hindered their in-depth studies and practical applications to date. Here we report, for the first time, a feasible synthesis of single-crystal IV-VI SnSe nanoplates in a controlled manner on mica substrates by vapor transport deposition. The as-grown SnSe nanoplates have approximately square shapes with controllable side lengths varying from I to 6 Dm. Electrical transport and optoelectronic measurements show that as-obtained SnSe nanoplates display p-type conductivity and high photoresponsivity. 二维的分层的 IVVI chalcogenides 在下一代的 optoelectronic 为应用正在吸引大兴趣,光电、热电的设备。然而,在高质量的 IVVI chalcogenide nanostructures 的可控制的合成的大挑战迄今为止妨碍了他们的深入的研究和实际应用。第一次,这里,我们由蒸汽运输免职在云母底层上以一种控制方式报导单个水晶的 IVVI SnSe nanoplates 的可行合成。成长得当的 SnSe nanoplates 有近似方形的形状,可控制的方面长度从 1 ~ 6 m 变化。电的运输和 optoelectronic 大小证明同样获得的 SnSe nanoplates 显示 p 类型电导率和高 photoresponsivity。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第1期288-295,共8页 纳米研究(英文版)
关键词 SnSe IV-VI chalcogenide NANOPLATE two-dimensional layeredcrystals OPTOELECTRONICS 控制合成 纳米 单晶 结构可控 热电装置 硫属化物 电传输 光电子
  • 相关文献

参考文献38

  • 1Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
  • 2Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
  • 3Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932- 934.
  • 4Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
  • 5Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues ofgraphene. Angew. Chem. Int. Edit. 2010, 49, 4059-4062.
  • 6Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotech 2011, 6, 147-150.
  • 7Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.
  • 8Bolotin, K. I.; Ghahari, F.; Shulman, M. D.; Stormer, H. L.; Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 2009, 462, 196-199.
  • 9Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech 2010, 5, 722 -726.
  • 10Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.

同被引文献25

引证文献9

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部