期刊文献+

Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy 被引量:7

Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy
原文传递
导出
摘要 Gold nanoparticle (Au NP)@ZnO nanorod (NR) (Au@ZnO) hybrids with various ZnO:Au molar ratios were developed to enhance the generation of reactive oxygen species (ROS) in photodynamic therapy (PDT) applications. Introducing a metal/semiconductor heterostructure interface between Au NPs and ZnO NRs modulated electron transfer under ultraviolet (UV) irradiation, which dramatically suppressed the electron-hole recombination in ZnO and simultaneously increased the amount of excited electrons with high energy at Au NP surfaces. Hence, the ROS yield of the nanohybrid was considerably improved over those of pristine Au NPs or ZnO NRs alone and demonstrated a "1 + 1 〉 2 effect." This enhancement was strengthened with increases in the proportion of Au in the hybrid. The results showed that the Au@ZnO nanohybrids with a ZnO:Au ratio of 20:1 generated the highest ROS yield because they had the largest interface area between Au and ZnO, which in turn led to the lowest cell viability for HeLa and C2C12 cells during PDT. Furthermore, both ROS generation and cell destruction were positively correlated with nanohybrid dosage. The Au@ZnO hybrid (20:1, 100 μg/mL) resulted in HeLa cell viability as low as 28% after UV exposure for 2 min, which indicated its promising potential to improve the therapeutic efficacy of PDT. 金 nanoparticle (Au NP )@ ZnO nanorod (NR )(Au@ZnO ) 有各种各样的 ZnO 的混血儿: Au 臼齿的比率被开发在光力学的治疗(太平洋夏季时间) 提高反应的氧种类(ROS ) 的产生应用程序。介绍在 Au NP 和 ZnO NR 之间的一个金属 / 半导体 heterostructure 接口调制了电子转移在下面紫外(紫外) 照耀,它戏剧性地在 ZnO 压制了电子洞再结合并且同时在 Au NP 表面与高精力增加了激动的电子的数量。因此, nanohybrid 的 ROS 收益更加独自太古的 Au NP 或 ZnO NR 在那些上被改进并且表明了 1 + 1 > 2 效果。这改进随混血儿的 Au 的比例的增加被加强。结果证明有 ZnO 的 Au@ZnO nanohybrids : 因为他们有在 Au 和 ZnO 之间的最大的接口区域, 20:1 的 Au 比率产生了最高的 ROS 收益,它接着在太平洋夏季时间期间为 HeLa 和 C2C12 房间导致了最低房间生存能力。而且, ROS 产生和房间破坏断然与 nanohybrid 剂量被相关。Au@ZnO 混血儿(20:1, 100 g/mL ) 导致了为 2 min 象 28% 一样在紫外暴露以后低的 HeLa 房间生存能力,它显示了它的有希望的潜力改进太平洋夏季时间的治疗学的功效。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第6期2004-2014,共11页 纳米研究(英文版)
基金 This work was supported by the National Basic Research Program of China (No. 2013CB932600), the Major Project of International Cooperation and Exchanges (No. 2012DFA50990), the Program of Introducing Talents of Discipline to Universities, the National Natural Science Foundation of China (Nos. 51232001, 51172022, 51372023, and 31371203), the Research Fund of Co-Construction Program from Beijing Municipal Commission of Education, the Fundamental Research Funds for the Central Univer- sities, and the Program for Changjiang Scholars and Innovative Research Team in University.
关键词 gold nanoparticles ZnO nanorods reactive oxygen species photodynamic therapy 氧化锌纳米棒 金纳米颗粒 光动力学治疗 活性氧 杂种 金纳米粒子 细胞存活率 紫外线照射
  • 相关文献

参考文献2

二级参考文献42

  • 1Lovell, J. F.; Liu, T.; Chen, J., Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 2010, 110, 2839-2857.
  • 2Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring and optimization. Chem. Rev. 2010, 110, 2795-2838.
  • 3Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photo- dynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380-387.
  • 4Agostinis, P.; Berg, K.; Cengel, K. A., Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R., Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61,250-281.
  • 5Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889-905.
  • 6Bugaj, A. M. Targeted photodynamic therapy-a promising strategy of tumor treatment. Photochem. PhotobioL Sci. 2011, 10, 1097-1109.
  • 7Allison, R. R.; Downie, G. H.; Cuenca, R.; Hu, X. H.; Childs, C. J.; Sibata, C. H. Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther. 2004, 1, 2742.
  • 8Yang, H. Y.; Wang, F. Y.; Zhang, Z. Y. Photobleaching of chlorins in homogeneous and heterogeneous media. Dyes Pigm. 1999, 43, 109-117.
  • 9Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. H. V.; Zheng, G. Porphysome nanovesicles generated by porphyrinbilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324-332.
  • 10Davies, A.; Lewis, D. J.; Watson, S. P.; Thomas, S. G.; Pikramenou, Z. pH-controlled delivery of luminescent europium coated nanoparticles into platelets. Proc. Natl. Acad. Sci. USA 2012, 109, 1862-1867.

共引文献14

同被引文献20

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部