期刊文献+

Applications of phototheranostic nanoagents in photodynamic therapy 被引量:8

Applications of phototheranostic nanoagents in photodynamic therapy
原文传递
导出
摘要 Nanotherapeutics has an increasing role in the treatment of diseases such as cancer. In photodynamic therapy (PDT) a therapeutically inactive photosensitizer compound is selectively activated by light to produce molecules capable of killing diseased cells and pathogens. A phototheranostic agent can be defined as a single nanoentity with the capabilities for targeted delivery, optical imaging and photodynamic treatment of a disease. Malignant cells, tissue and microbial etiologic agents can be effectively targeted by PDT. Photodynamic therapy is noninvasive, or minimally invasive, and has few side effects as damage to healthy tissue is minimized and the killing effect is localized. Various forms of cancer, acne and other diseases may be treated. The in vivo efficacy of photosensitizers is further improved by attaching them to nanostructures capable of targeting the diseased site. Such photosensitizer-functionalized nanostructures, or nano- therapeutics, allow site-specific delivery of imaging and therapeutic agents for improved phototheranostic performance. This review explores the potential applications of phototheranostic nanostructures in diagnosis and therapy. Nanotherapeutics 在象癌症那样的疾病的治疗有一个增加的角色。在光力学的治疗(太平洋夏季时间) ,治疗学地不活跃的 photosensitizer 混合物被光有选择地激活生产能够杀死 diseased 房间和病原体的分子。一个 phototheranostic 代理人能为指向的交货,光成像和疾病的光力学的治疗与能力被定义为单个 nanoentity。恶意的房间,纸巾和微生物引起的 etiologic 代理人能被太平洋夏季时间有效地指向。光力学的治疗是 noninvasive,或最低限度地侵略,并且当健康织物的损坏被最小化,杀死的效果是局部性的,有很少副作用。癌症,粉刺和另外的疾病的各种各样的形式可以被对待。在里面 photosensitizers 的 vivo 功效被把他们纳入能够指向 diseased 地点的 nanostructures 进一步改进。如此的 photosensitizer-functionalized nanostructures,或 nanotherapeutics,为改进 phototheranostic 性能允许成像和治疗学的代理人的地点特定的交货。这评论在诊断和治疗探索 phototheranostic nanostructures 的潜在的应用。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第5期1373-1394,共22页 纳米研究(英文版)
关键词 phototheranostics photodynamic therapy PHOTOSENSITIZERS THERANOSTICS NANOMEDICINE 光动力疗法 应用 纳米结构 光动力学治疗 光学成像 治疗剂 位点特异性 光敏剂
  • 相关文献

参考文献11

二级参考文献92

  • 1曾卓,廖子英,唐天声,陈超森.含氟卟啉的研究进展[J].有机化学,2007,27(1):24-33. 被引量:4
  • 2Szakacs, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219-234.
  • 3Kirkin, V.; Joos, S.; Zornig, M. The role of Bcl-2 family members in tumorigenesis. Biochim. Biophys. Acta-Mol. Cell Res. 2004, 1644,229-249.
  • 4Kruh, G. D. Introduction to resistance to anticancer agents. Oncogene 2003, 22, 7262-7264.
  • 5Calderwood, S. K.; Khaleque, M. A.; Sawyer, D. B.; Ciocca, D. R. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem. Sci. 2006,31, 164-172.
  • 6Duhem, C.; Ries, F.; Dicato, M. What does multidrug resistance (MDR) expression mean in the clinic. Oncologist 1996,1,151-158.
  • 7Krishna, R.; Mayer, L. D. Multidrug resistance (MDR) in cancer: Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 2000,11,265-283.
  • 8Ferry, D. R.; Traunecker, H.; Kerr, D. J. Clinical trials of P-gJycoprotein reversal in solid tumours. Eur. J. Cancer 1996, 32A, 1070-1081.
  • 9Rowinsky, E. K.; Smith, L.; Wang, Y. M.; Chaturvedi, P.; Villalona, M.; Campbell, E.; Aylesworth, C.; Eckhardt, S. G.; Hammond, L.; Kraynak, M., et al. Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDRI and MRP. J. Clin. Oncol. 1998,16,2964-2976.
  • 10Jabr-Milane, L. S.; van Vlerken, L. E.; Yadav, S.; Amiji, M. M. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008, 34, 592-602.

共引文献96

同被引文献32

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部