期刊文献+

低温常压条件下NaCl-H_2O体系对铜活化迁移的影响因素Ⅱ:pH值和盐度 被引量:3

Influence factors Ⅱ: pH and salinity on copper activation migration in NaCl-H_2O system under condition of atmospheric pressure and low temperature
下载PDF
导出
摘要 文章采用动态模拟实验研究了卤水NaCl-H2O体系不同盐度、酸碱度对砂岩中铜元素的活化迁移作用。结果表明,在常压室温环境下,卤水盐度越高,越有利于含铜砂岩中铜的活化迁移,不同盐度卤水对铜的活化强度表现为w(NaCl)为25%的溶液>w(NaCl)为20%的溶液>w(NaCl)为10%的溶液>w(NaCl)为5%的溶液。酸碱度条件模拟实验,揭示了强酸(pH=0.71)或者强碱(pH=10.28)环境有利于铜的活化迁移,尤其是在强酸(pH=0.71)条件下,可极大增强铜的溶解性,这对于解释蒸发岩盆地含铜卤水的成矿过程具有重要的理论和实际意义。 This study focused on the activation effect of sandstone copper in the NaCl-H2O system by the dynamic simulation experiments under the conditions of different salinities and acidities. The results show that the higher the brine salinity, the more favorable the condition for copper's activation and migration in cupreous sandstone in the environment of atmospheric pressure and room temperature. The activation capability of Cu under different brine salinities shows the regularity 25% NaCl solution 〉 20% NaCl solution 〉 10% NaCl solution 〉 5% NaCl solution; In addition, the copper element is much easier to be activated in a strong acid (pH=0.71) or strong alkali (pH=10.28) environment; especially under the condition of strong acid (pH=0.71), the solubility of Cu could be greatly enhanced. The research provides important theoretical and practical basis for explaining the metallogenic process of Cu-bearing brine in evaporite basin.
出处 《矿床地质》 CAS CSCD 北大核心 2015年第3期581-588,共8页 Mineral Deposits
基金 中央级公益性科研院所基本科研业务费专项基金(编号:K1010 YK1404) 国家自然科学基金青年基金(编号:41002028) 国家重点基础研究发展计划(973)项目(编号:2011CB403007)共同资助
关键词 地球化学 卤水 NaCl-H2O体系 盐度 PH值 铜活化 geochemistry, brine, NaCl-H2O system, salinity, pH, copper activation
  • 相关文献

参考文献21

  • 1Archibald S M, Migdisov A A and Willarns-Jones A E. 2002. An experimental study of stability of copper chloride complexes in water vapor at elevated temperatures and pressur[J]. Geoehirnica et Cos- moehimiea Aeta, 66(9): 1611-1619.
  • 2Brown A C. 1997. Zoning in the White Pine copper deposit, Ontonogan Country, Michigan[J]. Econ. Geol., 66:543-573.
  • 3Haynes D W and Bloom M S. 1986. Stratiform copper deposits hosted by low-energy .sediments: Ⅱ. Nature of source rock and composita- tion of metal transporting water[J]. Econ. Geol., 81: 266-280.
  • 4Helgeson H C. 1969. Thermodynamics of hydrothennal systems at ele- vated temperatures and pressures[J ]. American Journal of Science, 267(7): 729-804.
  • 5Johnson J W, Oelkers E H and HelgesonH C. 1992. Supert 92: Asofe- ware package for Calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000℃[J]. Computers & Geosciences, 18: 899-947.
  • 6Migdisov A A, Williams-Jones A E and Suleimenov O M. 1999. The solubility of ehlorargyrite (AgC1) in water vapor at elevated temperatures and pressures[J]. Geochimica et Cosmochimiea Acta, 63:3817-3827.
  • 7Warren J K. 1997. Evaporites, brines and base metals: Fluids, flow and "the evaporite that was"[J ]. Australian Journal of Earth Sciences, 44(2): 149-183.
  • 8Warren J K. 2010. Evaporites through time: Tectonic, climatic and eu static controls in marine and nonmarine deposits[J ]. Earth-Scienee Reviews, 98: 217-268.
  • 9White W S. 1968. The native copper deposits of northern Michigan, in ore deposits of the United States[M]. New York: American Insti- tute of Mining Engineers. 303-325.
  • 10白开寅,韩照信.新疆康古尔塔格金矿床的副氯铜矿发现及其地质意义[J].西北地质,2007,40(2):114-117. 被引量:4

二级参考文献68

共引文献132

同被引文献72

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部