期刊文献+

运动目标检测中基于灰度特征模型的背景消除方法 被引量:5

Background Subtraction Method Based on Gray Feature Model in Moving Target Detection
下载PDF
导出
摘要 针对视频监控中运动目标检测时间复杂度高的问题,提出一种基于灰度特征模型的背景消除方法。通过提取视频图像像素的灰色特征,将视频图像中每个位置上的像素点用一个灰度特征集合来表征,并以此为依据计算各像素点灰度值与灰度特征集合中的像素点灰度值之间的距离,判别对应像素点的背景与前景状态,从而实现视频图像的背景消除。实验结果表明,该方法在处理效果接近的情况下,可以显著提升运动目标的检测速度,降低处理的时间复杂度。 In the respect of moving target detection,focused on the high complexity of present algorithms,a gray feature model-based background subtraction method is proposed. By extracting the gray features of the pixels in the video image, the pixel of the video image can be presented by a set of gray features, which is taken as a basis for determining the background/foreground state of the corresponding pixel in the video image by computing the distance between the gray value of the pixel in the video image and the gray value of the pixel in the gray feature set. Experimental results show that, the gray feature model-based background subtraction method can significantly enhance the processing speed and reduce the time complexity of the moving target detection,in case of the same detecting results.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第6期240-246,257,共8页 Computer Engineering
基金 国家社会科学基金资助项目(13CFX055) 新疆维吾尔自治区高校科研计划科学研究基金资助重点项目(XJEDU2013I34)
关键词 运动目标检测 视频监控 背景消除 灰度特征模型 特征分析 moving target detection video surveillance background subtraction gray feature model feature analysis
  • 相关文献

参考文献16

  • 1中国安全防范产品行业协会.中国安防行业“十二五”(2011~2015)发展规划[J].中国安防,2011,2(3):1-35.
  • 2Gupt S,Masound O.Detection and Classification for Vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2002,3(1):37-47.
  • 3Wren C,Azarbayejani A,Darrell T,et al.Pfinder:Realtime Tracking of the Human Body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 4Stauffer C,Grimson W.Adaptive Background Mixture Models for Real-time Tracking[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,1999:246-252.
  • 5Elgammal A M,Harwood D,Davis L S.Non-parametric Model for Background Subtraction[C]//Proceedings of the6th European Conference on Computer Vision.Berlin,Germany:Springer,2000:751-767.
  • 6Kyungnam K,Chalidabhongse T H,Harwood D,et al.Background Modeling and Subtraction by Codebook Construction[C]//Proceedings of International Conference on Image Processing.Washington D.C.,USA:IEEE Press,2004:3061-3064.
  • 7郝毫刚,陈家琪.基于五帧差分和背景差分的运动目标检测算法[J].计算机工程,2012,38(4):146-148. 被引量:42
  • 8左凤艳,高胜法,韩建宇.基于加权累积差分的运动目标检测与跟踪[J].计算机工程,2009,35(22):159-161. 被引量:12
  • 9喻旭勇,王直杰.基于灰度触发的Mean Shift自动跟踪算法[J].计算机工程,2014,40(1):228-231. 被引量:4
  • 10王琳,潘建寿,杨志刚.高阶统计量的背景估计法在运动目标检测中的应用[J].计算机工程与应用,2011,47(6):161-163. 被引量:3

二级参考文献68

共引文献82

同被引文献33

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部