期刊文献+

Legendre多项式法求一类变阶数分数阶微分方程数值解 被引量:1

Numerical Solution for a Class of Variable Order Fractional Differential Equation Using Legendre Polynomials
下载PDF
导出
摘要 本文利用Legendre多项式求解一类变分数阶微分方程.结合Legendre多项式,给出三种不同类型的微分算子矩阵.通过微分算子矩阵,将原方程转化一系列矩阵的乘积.最后离散变量,将矩阵的乘积转化为代数方程组,通过求解方程组,从而得到原方程的数值解.数值算例验证了本方法的高度可行性和准确性. In this paper, we use Legendre polynomials to solve the numerical solution of a class of variable order fractional differential equations. We derive three different kinds of operational matrixes with Legendre polynomials, so the initial equation is transformed into the products of several dependent matrixes which can also be regarded as a system of equations after dispersing the variable. By solving the system of equations, the numerical solutions are obtained. Numerical examples are provided to show that the method is computationally efficient and accurate.
出处 《应用数学》 CSCD 北大核心 2015年第3期609-616,共8页 Mathematica Applicata
基金 国家自然科学基金(61176089)
关键词 变分数阶微分方程 LEGENDRE多项式 算子矩阵 数值解 绝对误差 Variable order fractional differential equation Legendre polynomials Operational matrix Numerical solution Absolute error
  • 相关文献

参考文献14

  • 1薛齐文,魏伟.含分数阶导数微分方程的数值求解[J].大连交通大学学报,2009,30(5):88-92. 被引量:6
  • 2Kenneth S, Ber Tram R. An Introduction to the Fractional Differential Calculus and Fractional Differential Equations[M]. New York : Wiley, 1993.
  • 3YU Cheng, GAO Guozhu. Existence of fractional differentiM equations [J]. Journal of Mathematical Analysis and Applications, 2005, 310 (1) : 26-29.
  • 4Domenico D , Lurgi R. Existence and uniqueness for a nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 1996, 204 (2): 609-625.
  • 5Samko S G. Fractional integration and differentiation of variable order [J]. Anal. Math., 1995, 21: 213 - 236.
  • 6Coimbra C F M. Mechanics with variable-order differential operators [J]. Ann. Phys., 2003, 12 (11 / 12): 692 - 703.
  • 7Samko S G, Ross B. Intergation and differentiation to a variable fractional order [J]. Integral Trans and Special Func., 1993, 1 (4): 277- 300.
  • 8Lorenzo C F, Hartley T T. Initialization, Conceptualization, and Application in the GenerMized Fractional Calculus [M].Washington:NASA Technical Publication,1998.
  • 9Lorenzo C F, Hartley T T.Variable order and distributed order fractional operators [J]. Nonlinear Dynam, 2002, 29: 57- 98.
  • 10ZHUANG P, LIU F, Anh V, Turner I. Numerical methods for the variable-order fractional advection- diffusion equation with a nonlinear sourceterm [J]. SIAM J. Numer Anal, 2009, 47:1760 - 1781.

二级参考文献18

  • 1郑达艺,刘发旺,卢旋珠.空间分数阶微分方程混合问题的数值方法[J].莆田学院学报,2006,13(2):11-14. 被引量:6
  • 2王建有,陈健云.输入信息不完备下预报-校正类识别法探讨[J].振动工程学报,2006,19(3):336-340. 被引量:2
  • 3Chen C M,Liu F,V Anh,et al.Numerical schemeswith high spatial accuracy for a variable-orderanomalous subdiffusion equation. SIAM J SciComput . 2010
  • 4G Diaz,C F M Coimbra.Nonlinear dynamics andcontrol of a variable order oscillator with applicationto the van der Pol equation. Nonlinear Dynamics . 2009
  • 5S G Samko,,B Ross.Intergation and differentiation toa variable fractional order. Integral Transforms andSpecial Functions . 1993
  • 6S G Samko.Fractional integration and differentiationof variable order. Analysis Mathematica . 1995
  • 7H T C Pedro,M H Kobayashi,J M C Pereira,et al.Variable order modeling of diffusive-convective effectson the oscillatory flow past a sphere. Journal ofVibration and Control . 2008
  • 8E S Ramirez,F M Coimbra.On the selection andmeaning of variable order operators for dynamicmodeling. International Journal of DifferentialEquations . 2010
  • 9Zhuang P,Liu F,V Anh,et al.Numerical methodsfor the variable-order fractonal advection-diffusionequation with a nonlinear source term. SIAM JNumer Anal . 2009
  • 10C.M. Soon,C.F.M. Coimbra,M.H. Kobayashi.The variable viscoelasticity oscillator. Annal Physik . 2005

共引文献14

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部