期刊文献+

基于BP网络巡航段油耗估计及影响结构分析 被引量:4

Fuel Consumption Estimation for Cruise Phase Based on BP Neural Network and Its Analysis of Structural Factors
下载PDF
导出
摘要 针对影响因素众多、各因素之间耦合关系复杂,相对油耗呈显著非线性问题,提出了一种基于BP网络的神经元组合线性方法;该方法实现了复杂非线性关系的逼近,并利用MIV算法进行影响因素结构分析,以及各因素微小变化对巡航段油耗的贡献;实验结果对比表明:该方法建立的模型预测精度较高,泛化能力较强,对实际飞行中航线飞行油耗估计以及影响因素评估具有参考价值。 Due to the complex relations among the various factors, the aircraft fuel consumption is significantly nonlinear. This paper propose a method of neurons' linear combination based on BP neural network. The method achieved the approaching of complicated nonlinear relationship, and MIV algorithm is introduced to analyse the structure of factors, further, the experiment studied the contribution caused by small changes of each factor on cruise segment fuel consumption. The simulation results suggests that the model built up based on this method performing with high precision and better generalization abilities, and it has reference value in actual aircraft fuel consumption and structure analysis of the factors.
出处 《计算机测量与控制》 2015年第6期2135-2138,共4页 Computer Measurement &Control
基金 国家科技支撑计划(2012BAC20B03) 民航局科技基金项(MHRD201121) 中央高校基本科研业务费(ZXH2012D015 ZXH2012G004 3122013J004)
关键词 BP网络 平均影响值算法 结构分析 油耗模型 BP network MIV algorithms structure analysis fuel consumption model
  • 相关文献

参考文献9

二级参考文献43

共引文献149

同被引文献49

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部