摘要
Abstract The continuously rotating detonation engine (CRDE) is a new concept of engines for air- craft and spacecraft. Quasi-stable continuously rotating detonation (CRD) can be observed in an annular combustion chamber, but the sustaining, stabilizing and adjusting mechanisms are not yet clear. To learn more deeply into the CRDE, experimental studies have been carried out to inves- tigate hydrogen-oxygen CRDE. Pressure histories are obtained during each shot, which show that stable CRD waves are generated in the combustor, when feeding pressures are higher than 0.5 MPa for fuel and oxidizer, respectively. Each shot can keep running as long as fresh gas feeding main- tains. Close-up of the pressure history shows the repeatability of pressure peaks and indicates the detonation velocity in hydrogen-oxygen CRD, which proves the success of forming a stable CRD in the annular chamber. Spectrum of the pressure history matches the close-up analysis and confirms the CRD. It also shows multi-wave phenomenon and affirms the fact that in this case a single detonation wave is rotating in the annulus. Moreover, oscillation phenomenon is found in pressure peaks and a self-adjusting mechanism is proposed to explain the phenomenon.
Abstract The continuously rotating detonation engine (CRDE) is a new concept of engines for air- craft and spacecraft. Quasi-stable continuously rotating detonation (CRD) can be observed in an annular combustion chamber, but the sustaining, stabilizing and adjusting mechanisms are not yet clear. To learn more deeply into the CRDE, experimental studies have been carried out to inves- tigate hydrogen-oxygen CRDE. Pressure histories are obtained during each shot, which show that stable CRD waves are generated in the combustor, when feeding pressures are higher than 0.5 MPa for fuel and oxidizer, respectively. Each shot can keep running as long as fresh gas feeding main- tains. Close-up of the pressure history shows the repeatability of pressure peaks and indicates the detonation velocity in hydrogen-oxygen CRD, which proves the success of forming a stable CRD in the annular chamber. Spectrum of the pressure history matches the close-up analysis and confirms the CRD. It also shows multi-wave phenomenon and affirms the fact that in this case a single detonation wave is rotating in the annulus. Moreover, oscillation phenomenon is found in pressure peaks and a self-adjusting mechanism is proposed to explain the phenomenon.
基金
supported by the National Natural Science Foundation of China(No.91441110)