期刊文献+

一种基于身份的全同态加密体制 被引量:1

Identity-Based Fully Homomorphic Encryption
下载PDF
导出
摘要 全同态加密在云计算安全领域具有重要应用价值。公钥尺寸较大是现有全同态加密体制普遍存在的缺点。为解决这一问题,文章将基于身份加密的思想和全同态加密体制相结合,利用近似特征向量方法,无需生成运算密钥,构造了一种真正意义上基于身份的全同态加密体制。采用更有效的陷门生成算法,将文献[13]中基于身份的全同态加密的体制参数由m≥5nlogq减小至m≈2nlogq。本体制的安全性在随机喻示模型下归约到容错学习问题难解性。 Fully homomorphic encryption is of great value in cloud computing. The public key of the existing fully homomorphic encryption has generally oversized. Using the approximate eigenvector method and taking the advantages of no evaluate keys, this paper constructs an identity-based fully homomorphic eneryption which compromises the merits of both kinds of encryption. Using the new effective trapdoor generation algorithm, the parameter m ≥ 5 nlogq in paper [ 13 ] has reduced to m 2nlogq. In the random oracle model, the security of the scheme strictly reduces to the hardness of decisional learning with error problems.
机构地区 信息工程大学
出处 《信息工程大学学报》 2015年第3期267-273,共7页 Journal of Information Engineering University
基金 河南省科技创新杰出青年基金资助项目(134100510002) 河南省基础与前沿技术研究项目(142300410002)
关键词 全同态加密 基于身份加密 近似特征向量 容错学习问题 前象可采样陷门单向函数 fully homomorphic encryption identity-based encryption approximate eigenvector learning with error trapdoor one-way function with preimage sampling
  • 相关文献

参考文献17

  • 1Gentry C. Fully homomorphic encryption using ideal lattices[ C]//STOC. 2009 : 169-178.
  • 2Van Dijk M,Gentry C , Halevi S, et al. Fully homomorphic encryption over the integers [ C ] //Advances in Cryptology-EURO-CRYPT 2010. 2010; 24-43.
  • 3Coron J S, Mandal A, Naccache D, et al. Fully homomorphic encryption over the integers with shorter public keys[ C]//Ad-vances in Cryptology-CRYPTO 2011. 2011 : 487-504.
  • 4Coron J S, Naccache D, Tibouchi M. Public key compression and modulus switching for fully homomorphic encryption over theintegers[ C] //Advances in Cryptology-EUROCRYPT 2012. 2012 : 446-464.
  • 5Brakerski Z,Vaikuntanathan V. Efficient fully homomorphic encryption from ( standard) LWE[ J]. SIAM Journal on Compu-ting, 2014, 43(2) : 831-871.
  • 6Brakerski Z, Gentry C,Vaikuntanathan V. ( Leveled) fully homomorphic encryption without bootstrapping[ C]//Proceedingsof the 3rd Innovations in Theoretical Computer Science Conference. 2012 : 309-325.
  • 7Gentry C, Halevi S, Smart N P. Fully homomorphic encryption with polylog overhead [ C ]//Advances in Cryptolog-EURO-CRYPT 2012. 2012: 465-482.
  • 8Gentry C , Halevi S, Smart N P. Better bootstrapping in fully homomorphic encryption [ C ] //Public Key Gryptography-PKC2012. 2012; 1-16.
  • 9Naccache D. Is theoretical cryptography any good in practice[ J]. Talk given at CHES,2010:81 - 106.
  • 10Gentry C , Halevi S, Vaikuntanathan V. A simple BGN-type cryptosystem from LWE[ C ]//Advances in Cryptology-EURO-CRYPT 2010. 2010; 506-522.

二级参考文献15

  • 1REGEY O. On lattices, learning with errors, random linear codes, and cryptography[A]. Proceeding of the 37th ACM Symposium on Theory of Computing (STOC2005) [C]. Baltimore, MD, USA, 2005.84-93.
  • 2LYUBASHEYSKY Y, PEIKERT C, REGEY O. On ideal lattices and learning with errors over rings[A]. Proceeding of the 29th Annual Eurocrypt Conference[C]. Riviera, French, 2010.1-23.
  • 3GENTRY C. Fully homomorphic encryption using ideal lattices[A]. Proceeding of the 40st ACM Symposium on Theory of Computing (STOC2009)[C]. Bethesda, Maryland, USA, 2009.169-178.
  • 4DIJK M Y, GENTRY C, HALEYI S, et al. Fully homomorphic encryption over the integers[A]. Proceeding of the 29th Annual Eurocrypt Conference[C]. Riviera, French, 2010.24-43.
  • 5SMART N P, YERCAUTEREN F. Fully homomorphic encryption with relatively small key and ciphertext sizes[A]. Proceeding of the 13th International Conference on Practice and Theory in Public Key Cryptography (PKC2010)[C]. Paris, France, 2010.420-443.
  • 6GENTRY C, HALEYI S. Implementing gentry's fully homomorphic encryption scheme[A]. Proceeding the 30th Annual Eurocrypt Conference[C]. Tallinn, Estonia, 2011.129-148.
  • 7STEHL'E D, STEINFELD R. Faster fully homomorphic encryption [A]. Proceeding of the 16th Annual Asiacrypt Conference [C]. Singapore, 2010.377-394.
  • 8BRAKERSKJ Z, YAIKUNTANATHAN V. Efficient fully homomorphic encryption from (standard) LWE[A]. Proceeding of IEEE 52nd Annual Symposium on Foundations of Computer Science(FOCS2011)[C]. Palm Springs, CA, USA, 20/1.97-106.
  • 9BRAKERSKJ Z, GENTRY C, YAlKUNTANATHAN Y. Fully homomorphic encryption without bootstrapping[A]. Proceeding of Innovations in Theoretical Computer Science 2012[C]. Cambridge, MA, USA,2012.309-325.
  • 10GENTRY C, HALEY1 S, SMARTN P. Fully homomorphic encryption with polylog overhead[A]. Proceeding of the 31st Annual Eurocrypt Conference[C]. Canbridge, UK, 2012.465-482.

共引文献12

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部