期刊文献+

气候变化背景下中药大黄原植物的适生区分布预测 被引量:10

Suitable Habitats Prediction of Original Plants of Rhei Radix et Rhizoma Under Climate Change
原文传递
导出
摘要 目的:在气候变化背景下,预测中药大黄原植物当代及未来适生区分布格局。方法:采用最大熵模型及多种气候变化场景,预测大黄原植物适生区分布格局及变迁。结果:所构建的大黄原植物分布模型具有极佳的预测精度。大黄原植物当代适生区总面积为84.20×104km2,占中国版图的8.77%;其中,当代适生区57.05%的区域为相对稳定适生区,受气候变化影响相对较小。在气候变化背景下,相较于当代,其在21世纪20、30、40、50、60、70和80年代的适生区总面积均不同程度的减少,但中度适生区面积均有不同程度增加。结论:气候变化对中药大黄原植物的适生区总面积和生境适宜度均会产生负面影响。 Objective:To predict the distribution patterns of the original plants of Rhei Radix et Rhizoma current and in future in China under climate change. Methods:A maximum entropy modeling and variety of climate change scenarios were employed to predict its current and future distribution ranges in China. Results :The resultant models exhibited excellent predictive power. The current suit- able habitats for original plants of Rhei Radix et Rhizoma totaled 84. 20 × 10^4 km^2, accounting for 8. 77% of the total area of China; 57.05% of its current suitable habitats (i. e. low impact areas )would be relatively lowly impacted by the climate change. Compared with its current distribution pattern,its distribution ranges during 2020s,2030s,2040s,2050,2060s,2070s and 2080s would be shrunk to some extent. However, the moderately suitable area would be expanded to a certain degree. Conclusion:Climate change has a negative impact on the total area and the habitat suitability for the original plants of Rhei Radix et Rhizoma.
出处 《中药材》 CAS CSCD 北大核心 2015年第3期467-472,共6页 Journal of Chinese Medicinal Materials
基金 中央高校基本科研业务费专项资金(xjj2014142)
关键词 大黄原植物 物种分布模型 生态位模型 最大熵模型 分布区预测 Rhei Radix et Rhizoma Species distribution modeling(SDM) Ecological niche modeling(ENM) Maximum entropy modeling Range prediction
  • 相关文献

参考文献14

  • 1Bao B J, Grabovskaya-Borodina AE. Flora of China [ M ]. Vol, 5. Beijing: Science Press ; St. Louis : Missouri Botanical Garden, 2003 : 341-350.
  • 2傅兴圣,陈菲,刘训红,许虎,周逸芝.大黄化学成分与药理作用研究新进展[J].中国新药杂志,2011,20(16):1534-1538. 被引量:302
  • 3Wang XM, Hou XQ, Zhang YQ, et al. Distribution pattern of genuine species of rhubarb as traditional Chinese medicine [J]. J Med Plants Res,2010,4(18) :1865-1876.
  • 4李敏,李丽霞,刘渝,刘勇.大黄研究进展[J].世界科学技术-中医药现代化,2006,8(4):34-39. 被引量:78
  • 5Phillips SJ, Dudfk M, Schapire RE. A maximum entropy ap- proach to species distribution modeling[ A]. Proceedings of the twenty-first international conference on machine learn- ing[ C ]. New York : ACM Press ,2004.
  • 6Elith J, Phillips S J, Hastie T, et al. A statistical explanation of Maxent for ecologists [ J ]. Divers Distrib, 2011,17 ( 1 ) : 43 -57.
  • 7Ara0jo MB, Pearson RG, Thuiller W, et al. Validation of species-climate impact models under climate change [ J J. Global Change Biol ,2005 ,11 (9) : 1504-1513.
  • 8Guisan A, Thuiller W. Predicting species distribution : offer- ing more than simple habitat models [ J ]. Ecol Lett, 2005,8 (9) :993-1009.
  • 9Phillips SJ, DudIk M. Modeling of species distributions with Maxent: new extensions and a comprehensive evalua- tion [ J ]. Ecography ,2008 ,31 (2) : 161-175.
  • 10胡理乐,张海英,秦岭,闫伯前.中国五味子分布范围及气候变化影响预测[J].应用生态学报,2012,23(9):2445-2450. 被引量:41

二级参考文献164

共引文献480

同被引文献159

引证文献10

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部