期刊文献+

基于概率的自适应跳频通信系统中的跳频图案产生方法 被引量:5

Frequency Hopping Pattern Generation Method in Probabilities-Based Adaptive Frequency Hopping Communication System
下载PDF
导出
摘要 为了提高水声跳频通信系统的可靠性和保密性,提出了基于误码率映射和对伪随机数流的量化来产生跳频图案的方法,该方法将各个跳频频点的误码率映射为一个概率密度函数,由此得到量化向量,根据伪随机数发生器产生的满足特定统计规律的伪随机数流和特定的量化准则,对伪随机数流进行量化,生成跳频图案,进行跳频通信。构建基于概率的自适应跳频通信仿真系统,仿真结果表明基于概率的自适应跳频通信相对于传统的跳频通信或自适应跳频通信误码率更低,且保密性更强。 To improve the reliability and security of underwater acoustic (UWA) FH system, a method producing frequency hopping (FH) pattern is presented based on bit error rates (BER) mapping and the quantification of pseudo random numbers. BER of all FH channels are mapped into the probability densi- ty function (PDF), a quantitative vector can therefore be obtained. Furthermore, the pseudo random numbers, produced by the pseudo random number generator, generate FH patterns according to the spe- cific statistical rule and quantitative criteria, which are used for FH communications. A specific adaptive FH communication simulation system based on probabilities is further established. Experimental simula- tion demonstrates that the proposed method has a lower BER compared with the traditional FH or adap- tive FH. Moreover, it features better security performance.
出处 《数据采集与处理》 CSCD 北大核心 2015年第3期585-590,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(51249005)资助项目 教育部博士点基金(20106102120013)资助项目 西北工业大学基础研究基金(NPU-FFR-JCY20130107)资助项目
关键词 水声通信 自适应跳频 概率 伪随机数量化 underwater acoustic communications adaptive frequency hopping probability quantificationof pseudo random numbers
  • 相关文献

参考文献8

  • 1李一兵,谭俊锋,叶方,雷洪玉.自适应跳频通信系统信道质量评估方法研究[J].哈尔滨工程大学学报,2006,27(3):442-446. 被引量:3
  • 2YIN JingWei ZHANG Xiao SUN LiQiang MEI JiDan.An application of the differential spread-spectrum technique in mobile underwater acoustic communication[J].Science China(Information Sciences),2011,54(10):2190-2198. 被引量:5
  • 3Zander J, Malmgren G. Adaptive frequency hopping in HF communication[J]. IEE Proceedings, 1995, 142 (2): 99-105.
  • 4Stabellini L, Shi L, Rifai A A, et al. A new probabilistic approach for adaptive frequency hopping[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. Tokyo: IEEE, 2009:2147 2151.
  • 5Stojanovic M. Underwater acoustic communications: Design considerations on the physical layer[C]//Wireless on Demand Network Systems and Services, Fifth Annual Conference, Garmisch-Partenkirchen. USA: IEEE, 2008: 1-10.
  • 6陆清,林晓晖,李军,包先雨,吴小国.一种改进的混沌跳频序列的设计方法[J].数据采集与处理,2010,25(1):122-125. 被引量:7
  • 7Ling Cong, Sun Songgeng. Chaotic frequency hopping sequences[J]. IEEE Transactions on Communications, 1998, 46 (11): 1433-1437.
  • 8Heldari-Bateni G , McGillem C D . A chaotic direct-sequence spread-spectrum communication system [J]. IEEE Transac- tions on Communications, 1994,42(234): 1524-1527.

二级参考文献23

  • 1刘向东,焉德军,段晓东,王光兴.中间多比特量化混沌跳频序列及其性能分析[J].微电子学与计算机,2004,21(8):5-9. 被引量:10
  • 2米良,唐刚.一种混沌跳频序列构造方法[J].通信学报,2005,26(12):69-74. 被引量:16
  • 3韩晶,黄建国,张群飞,申晓红,何成兵.正交M-ary/DS扩频及其在水声远程通信中的应用[J].西北工业大学学报,2006,24(4):463-467. 被引量:13
  • 4Cambel A B. Applied chaos theory.. A paradigm for complexity [M]. San Diego:Academic Press, 1993 69-74.
  • 5Robert Matthews. On the derivation of a chaotic encryption algorithm [J]. Cryptologia, 1989, 8 (1):29-41.
  • 6Wheeler D D, Matthews R A J. Supercomputer investigations of a chaotic encryption algorithm [J]. Cryptologia, 1991, 15(2): 140-152.
  • 7Qiao L, Nahrstedt K, Tam I. Is MPEG encryption by using random list instead of zigzag order secure [C]//IEEE International Symposium on Consumer Electronics. Singapore: IEEE Piscataway, 1997: 226-229.
  • 8Ling G, Wu X, Sun S. A general efficient method for chaotic signal estimation[J]. IEEE Transactions on Signal Processing, 1999, 47(5) : 1424-1428.
  • 9GOLMIE N. Performance evaluation of a bluetooth channel estimation algorithm[A]. IEEE International Symposium on Personal Indoor and Mobile Radio Communications[C]. Lisbon, Portugal, 2002.
  • 10华琨 朱世华 王霞.基于TMS320VC5410的快跳频通信系统研究.西部通信,2003,4:15-15.

共引文献12

同被引文献42

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部